Step |
Hyp |
Ref |
Expression |
1 |
|
ordsuci |
|- ( Ord A -> Ord suc A ) |
2 |
|
sucidg |
|- ( A e. _V -> A e. suc A ) |
3 |
|
ordelord |
|- ( ( Ord suc A /\ A e. suc A ) -> Ord A ) |
4 |
3
|
ex |
|- ( Ord suc A -> ( A e. suc A -> Ord A ) ) |
5 |
2 4
|
syl5com |
|- ( A e. _V -> ( Ord suc A -> Ord A ) ) |
6 |
|
sucprc |
|- ( -. A e. _V -> suc A = A ) |
7 |
6
|
eqcomd |
|- ( -. A e. _V -> A = suc A ) |
8 |
|
ordeq |
|- ( A = suc A -> ( Ord A <-> Ord suc A ) ) |
9 |
7 8
|
syl |
|- ( -. A e. _V -> ( Ord A <-> Ord suc A ) ) |
10 |
9
|
biimprd |
|- ( -. A e. _V -> ( Ord suc A -> Ord A ) ) |
11 |
5 10
|
pm2.61i |
|- ( Ord suc A -> Ord A ) |
12 |
1 11
|
impbii |
|- ( Ord A <-> Ord suc A ) |