Metamath Proof Explorer


Theorem ordsuc

Description: A class is ordinal if and only if its successor is ordinal. (Contributed by NM, 3-Apr-1995) Avoid ax-un . (Revised by BTernaryTau, 6-Jan-2025)

Ref Expression
Assertion ordsuc
|- ( Ord A <-> Ord suc A )

Proof

Step Hyp Ref Expression
1 ordsuci
 |-  ( Ord A -> Ord suc A )
2 sucidg
 |-  ( A e. _V -> A e. suc A )
3 ordelord
 |-  ( ( Ord suc A /\ A e. suc A ) -> Ord A )
4 3 ex
 |-  ( Ord suc A -> ( A e. suc A -> Ord A ) )
5 2 4 syl5com
 |-  ( A e. _V -> ( Ord suc A -> Ord A ) )
6 sucprc
 |-  ( -. A e. _V -> suc A = A )
7 6 eqcomd
 |-  ( -. A e. _V -> A = suc A )
8 ordeq
 |-  ( A = suc A -> ( Ord A <-> Ord suc A ) )
9 7 8 syl
 |-  ( -. A e. _V -> ( Ord A <-> Ord suc A ) )
10 9 biimprd
 |-  ( -. A e. _V -> ( Ord suc A -> Ord A ) )
11 5 10 pm2.61i
 |-  ( Ord suc A -> Ord A )
12 1 11 impbii
 |-  ( Ord A <-> Ord suc A )