Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
|- ( ( Ord B /\ A e. B ) -> Ord B ) |
2 |
|
ordelord |
|- ( ( Ord B /\ A e. B ) -> Ord A ) |
3 |
1 2
|
jca |
|- ( ( Ord B /\ A e. B ) -> ( Ord B /\ Ord A ) ) |
4 |
|
simpl |
|- ( ( Ord B /\ suc A e. suc B ) -> Ord B ) |
5 |
|
ordsuc |
|- ( Ord B <-> Ord suc B ) |
6 |
|
ordelord |
|- ( ( Ord suc B /\ suc A e. suc B ) -> Ord suc A ) |
7 |
|
ordsuc |
|- ( Ord A <-> Ord suc A ) |
8 |
6 7
|
sylibr |
|- ( ( Ord suc B /\ suc A e. suc B ) -> Ord A ) |
9 |
5 8
|
sylanb |
|- ( ( Ord B /\ suc A e. suc B ) -> Ord A ) |
10 |
4 9
|
jca |
|- ( ( Ord B /\ suc A e. suc B ) -> ( Ord B /\ Ord A ) ) |
11 |
|
ordsseleq |
|- ( ( Ord suc A /\ Ord B ) -> ( suc A C_ B <-> ( suc A e. B \/ suc A = B ) ) ) |
12 |
7 11
|
sylanb |
|- ( ( Ord A /\ Ord B ) -> ( suc A C_ B <-> ( suc A e. B \/ suc A = B ) ) ) |
13 |
12
|
ancoms |
|- ( ( Ord B /\ Ord A ) -> ( suc A C_ B <-> ( suc A e. B \/ suc A = B ) ) ) |
14 |
13
|
adantl |
|- ( ( A e. _V /\ ( Ord B /\ Ord A ) ) -> ( suc A C_ B <-> ( suc A e. B \/ suc A = B ) ) ) |
15 |
|
ordsucss |
|- ( Ord B -> ( A e. B -> suc A C_ B ) ) |
16 |
15
|
ad2antrl |
|- ( ( A e. _V /\ ( Ord B /\ Ord A ) ) -> ( A e. B -> suc A C_ B ) ) |
17 |
|
sucssel |
|- ( A e. _V -> ( suc A C_ B -> A e. B ) ) |
18 |
17
|
adantr |
|- ( ( A e. _V /\ ( Ord B /\ Ord A ) ) -> ( suc A C_ B -> A e. B ) ) |
19 |
16 18
|
impbid |
|- ( ( A e. _V /\ ( Ord B /\ Ord A ) ) -> ( A e. B <-> suc A C_ B ) ) |
20 |
|
sucexb |
|- ( A e. _V <-> suc A e. _V ) |
21 |
|
elsucg |
|- ( suc A e. _V -> ( suc A e. suc B <-> ( suc A e. B \/ suc A = B ) ) ) |
22 |
20 21
|
sylbi |
|- ( A e. _V -> ( suc A e. suc B <-> ( suc A e. B \/ suc A = B ) ) ) |
23 |
22
|
adantr |
|- ( ( A e. _V /\ ( Ord B /\ Ord A ) ) -> ( suc A e. suc B <-> ( suc A e. B \/ suc A = B ) ) ) |
24 |
14 19 23
|
3bitr4d |
|- ( ( A e. _V /\ ( Ord B /\ Ord A ) ) -> ( A e. B <-> suc A e. suc B ) ) |
25 |
24
|
ex |
|- ( A e. _V -> ( ( Ord B /\ Ord A ) -> ( A e. B <-> suc A e. suc B ) ) ) |
26 |
|
elex |
|- ( A e. B -> A e. _V ) |
27 |
|
elex |
|- ( suc A e. suc B -> suc A e. _V ) |
28 |
27 20
|
sylibr |
|- ( suc A e. suc B -> A e. _V ) |
29 |
26 28
|
pm5.21ni |
|- ( -. A e. _V -> ( A e. B <-> suc A e. suc B ) ) |
30 |
29
|
a1d |
|- ( -. A e. _V -> ( ( Ord B /\ Ord A ) -> ( A e. B <-> suc A e. suc B ) ) ) |
31 |
25 30
|
pm2.61i |
|- ( ( Ord B /\ Ord A ) -> ( A e. B <-> suc A e. suc B ) ) |
32 |
3 10 31
|
pm5.21nd |
|- ( Ord B -> ( A e. B <-> suc A e. suc B ) ) |