Metamath Proof Explorer


Theorem ordsucelsuc

Description: Membership is inherited by successors. Generalization of Exercise 9 of TakeutiZaring p. 42. (Contributed by NM, 22-Jun-1998) (Proof shortened by Andrew Salmon, 12-Aug-2011)

Ref Expression
Assertion ordsucelsuc
|- ( Ord B -> ( A e. B <-> suc A e. suc B ) )

Proof

Step Hyp Ref Expression
1 simpl
 |-  ( ( Ord B /\ A e. B ) -> Ord B )
2 ordelord
 |-  ( ( Ord B /\ A e. B ) -> Ord A )
3 1 2 jca
 |-  ( ( Ord B /\ A e. B ) -> ( Ord B /\ Ord A ) )
4 simpl
 |-  ( ( Ord B /\ suc A e. suc B ) -> Ord B )
5 ordsuc
 |-  ( Ord B <-> Ord suc B )
6 ordelord
 |-  ( ( Ord suc B /\ suc A e. suc B ) -> Ord suc A )
7 ordsuc
 |-  ( Ord A <-> Ord suc A )
8 6 7 sylibr
 |-  ( ( Ord suc B /\ suc A e. suc B ) -> Ord A )
9 5 8 sylanb
 |-  ( ( Ord B /\ suc A e. suc B ) -> Ord A )
10 4 9 jca
 |-  ( ( Ord B /\ suc A e. suc B ) -> ( Ord B /\ Ord A ) )
11 ordsseleq
 |-  ( ( Ord suc A /\ Ord B ) -> ( suc A C_ B <-> ( suc A e. B \/ suc A = B ) ) )
12 7 11 sylanb
 |-  ( ( Ord A /\ Ord B ) -> ( suc A C_ B <-> ( suc A e. B \/ suc A = B ) ) )
13 12 ancoms
 |-  ( ( Ord B /\ Ord A ) -> ( suc A C_ B <-> ( suc A e. B \/ suc A = B ) ) )
14 13 adantl
 |-  ( ( A e. _V /\ ( Ord B /\ Ord A ) ) -> ( suc A C_ B <-> ( suc A e. B \/ suc A = B ) ) )
15 ordsucss
 |-  ( Ord B -> ( A e. B -> suc A C_ B ) )
16 15 ad2antrl
 |-  ( ( A e. _V /\ ( Ord B /\ Ord A ) ) -> ( A e. B -> suc A C_ B ) )
17 sucssel
 |-  ( A e. _V -> ( suc A C_ B -> A e. B ) )
18 17 adantr
 |-  ( ( A e. _V /\ ( Ord B /\ Ord A ) ) -> ( suc A C_ B -> A e. B ) )
19 16 18 impbid
 |-  ( ( A e. _V /\ ( Ord B /\ Ord A ) ) -> ( A e. B <-> suc A C_ B ) )
20 sucexb
 |-  ( A e. _V <-> suc A e. _V )
21 elsucg
 |-  ( suc A e. _V -> ( suc A e. suc B <-> ( suc A e. B \/ suc A = B ) ) )
22 20 21 sylbi
 |-  ( A e. _V -> ( suc A e. suc B <-> ( suc A e. B \/ suc A = B ) ) )
23 22 adantr
 |-  ( ( A e. _V /\ ( Ord B /\ Ord A ) ) -> ( suc A e. suc B <-> ( suc A e. B \/ suc A = B ) ) )
24 14 19 23 3bitr4d
 |-  ( ( A e. _V /\ ( Ord B /\ Ord A ) ) -> ( A e. B <-> suc A e. suc B ) )
25 24 ex
 |-  ( A e. _V -> ( ( Ord B /\ Ord A ) -> ( A e. B <-> suc A e. suc B ) ) )
26 elex
 |-  ( A e. B -> A e. _V )
27 elex
 |-  ( suc A e. suc B -> suc A e. _V )
28 27 20 sylibr
 |-  ( suc A e. suc B -> A e. _V )
29 26 28 pm5.21ni
 |-  ( -. A e. _V -> ( A e. B <-> suc A e. suc B ) )
30 29 a1d
 |-  ( -. A e. _V -> ( ( Ord B /\ Ord A ) -> ( A e. B <-> suc A e. suc B ) ) )
31 25 30 pm2.61i
 |-  ( ( Ord B /\ Ord A ) -> ( A e. B <-> suc A e. suc B ) )
32 3 10 31 pm5.21nd
 |-  ( Ord B -> ( A e. B <-> suc A e. suc B ) )