Step |
Hyp |
Ref |
Expression |
1 |
|
ordtr |
|- ( Ord A -> Tr A ) |
2 |
|
suctr |
|- ( Tr A -> Tr suc A ) |
3 |
1 2
|
syl |
|- ( Ord A -> Tr suc A ) |
4 |
|
df-suc |
|- suc A = ( A u. { A } ) |
5 |
|
ordsson |
|- ( Ord A -> A C_ On ) |
6 |
|
elon2 |
|- ( A e. On <-> ( Ord A /\ A e. _V ) ) |
7 |
|
snssi |
|- ( A e. On -> { A } C_ On ) |
8 |
6 7
|
sylbir |
|- ( ( Ord A /\ A e. _V ) -> { A } C_ On ) |
9 |
|
snprc |
|- ( -. A e. _V <-> { A } = (/) ) |
10 |
9
|
biimpi |
|- ( -. A e. _V -> { A } = (/) ) |
11 |
|
0ss |
|- (/) C_ On |
12 |
10 11
|
eqsstrdi |
|- ( -. A e. _V -> { A } C_ On ) |
13 |
12
|
adantl |
|- ( ( Ord A /\ -. A e. _V ) -> { A } C_ On ) |
14 |
8 13
|
pm2.61dan |
|- ( Ord A -> { A } C_ On ) |
15 |
5 14
|
unssd |
|- ( Ord A -> ( A u. { A } ) C_ On ) |
16 |
4 15
|
eqsstrid |
|- ( Ord A -> suc A C_ On ) |
17 |
|
ordon |
|- Ord On |
18 |
17
|
a1i |
|- ( Ord A -> Ord On ) |
19 |
|
trssord |
|- ( ( Tr suc A /\ suc A C_ On /\ Ord On ) -> Ord suc A ) |
20 |
3 16 18 19
|
syl3anc |
|- ( Ord A -> Ord suc A ) |