Metamath Proof Explorer


Theorem ordsucss

Description: The successor of an element of an ordinal class is a subset of it. (Contributed by NM, 21-Jun-1998)

Ref Expression
Assertion ordsucss
|- ( Ord B -> ( A e. B -> suc A C_ B ) )

Proof

Step Hyp Ref Expression
1 ordelord
 |-  ( ( Ord B /\ A e. B ) -> Ord A )
2 ordnbtwn
 |-  ( Ord A -> -. ( A e. B /\ B e. suc A ) )
3 imnan
 |-  ( ( A e. B -> -. B e. suc A ) <-> -. ( A e. B /\ B e. suc A ) )
4 2 3 sylibr
 |-  ( Ord A -> ( A e. B -> -. B e. suc A ) )
5 4 adantr
 |-  ( ( Ord A /\ Ord B ) -> ( A e. B -> -. B e. suc A ) )
6 ordsuc
 |-  ( Ord A <-> Ord suc A )
7 ordtri1
 |-  ( ( Ord suc A /\ Ord B ) -> ( suc A C_ B <-> -. B e. suc A ) )
8 6 7 sylanb
 |-  ( ( Ord A /\ Ord B ) -> ( suc A C_ B <-> -. B e. suc A ) )
9 5 8 sylibrd
 |-  ( ( Ord A /\ Ord B ) -> ( A e. B -> suc A C_ B ) )
10 1 9 sylan
 |-  ( ( ( Ord B /\ A e. B ) /\ Ord B ) -> ( A e. B -> suc A C_ B ) )
11 10 exp31
 |-  ( Ord B -> ( A e. B -> ( Ord B -> ( A e. B -> suc A C_ B ) ) ) )
12 11 pm2.43b
 |-  ( A e. B -> ( Ord B -> ( A e. B -> suc A C_ B ) ) )
13 12 pm2.43b
 |-  ( Ord B -> ( A e. B -> suc A C_ B ) )