| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  |-  dom R = dom R | 
						
							| 2 | 1 | psrn |  |-  ( R e. PosetRel -> dom R = ran R ) | 
						
							| 3 | 2 | eqcomd |  |-  ( R e. PosetRel -> ran R = dom R ) | 
						
							| 4 | 3 | sneqd |  |-  ( R e. PosetRel -> { ran R } = { dom R } ) | 
						
							| 5 |  | vex |  |-  y e. _V | 
						
							| 6 |  | vex |  |-  x e. _V | 
						
							| 7 | 5 6 | brcnv |  |-  ( y `' R x <-> x R y ) | 
						
							| 8 | 7 | a1i |  |-  ( R e. PosetRel -> ( y `' R x <-> x R y ) ) | 
						
							| 9 | 8 | notbid |  |-  ( R e. PosetRel -> ( -. y `' R x <-> -. x R y ) ) | 
						
							| 10 | 3 9 | rabeqbidv |  |-  ( R e. PosetRel -> { y e. ran R | -. y `' R x } = { y e. dom R | -. x R y } ) | 
						
							| 11 | 3 10 | mpteq12dv |  |-  ( R e. PosetRel -> ( x e. ran R |-> { y e. ran R | -. y `' R x } ) = ( x e. dom R |-> { y e. dom R | -. x R y } ) ) | 
						
							| 12 | 11 | rneqd |  |-  ( R e. PosetRel -> ran ( x e. ran R |-> { y e. ran R | -. y `' R x } ) = ran ( x e. dom R |-> { y e. dom R | -. x R y } ) ) | 
						
							| 13 | 6 5 | brcnv |  |-  ( x `' R y <-> y R x ) | 
						
							| 14 | 13 | a1i |  |-  ( R e. PosetRel -> ( x `' R y <-> y R x ) ) | 
						
							| 15 | 14 | notbid |  |-  ( R e. PosetRel -> ( -. x `' R y <-> -. y R x ) ) | 
						
							| 16 | 3 15 | rabeqbidv |  |-  ( R e. PosetRel -> { y e. ran R | -. x `' R y } = { y e. dom R | -. y R x } ) | 
						
							| 17 | 3 16 | mpteq12dv |  |-  ( R e. PosetRel -> ( x e. ran R |-> { y e. ran R | -. x `' R y } ) = ( x e. dom R |-> { y e. dom R | -. y R x } ) ) | 
						
							| 18 | 17 | rneqd |  |-  ( R e. PosetRel -> ran ( x e. ran R |-> { y e. ran R | -. x `' R y } ) = ran ( x e. dom R |-> { y e. dom R | -. y R x } ) ) | 
						
							| 19 | 12 18 | uneq12d |  |-  ( R e. PosetRel -> ( ran ( x e. ran R |-> { y e. ran R | -. y `' R x } ) u. ran ( x e. ran R |-> { y e. ran R | -. x `' R y } ) ) = ( ran ( x e. dom R |-> { y e. dom R | -. x R y } ) u. ran ( x e. dom R |-> { y e. dom R | -. y R x } ) ) ) | 
						
							| 20 |  | uncom |  |-  ( ran ( x e. dom R |-> { y e. dom R | -. x R y } ) u. ran ( x e. dom R |-> { y e. dom R | -. y R x } ) ) = ( ran ( x e. dom R |-> { y e. dom R | -. y R x } ) u. ran ( x e. dom R |-> { y e. dom R | -. x R y } ) ) | 
						
							| 21 | 19 20 | eqtrdi |  |-  ( R e. PosetRel -> ( ran ( x e. ran R |-> { y e. ran R | -. y `' R x } ) u. ran ( x e. ran R |-> { y e. ran R | -. x `' R y } ) ) = ( ran ( x e. dom R |-> { y e. dom R | -. y R x } ) u. ran ( x e. dom R |-> { y e. dom R | -. x R y } ) ) ) | 
						
							| 22 | 4 21 | uneq12d |  |-  ( R e. PosetRel -> ( { ran R } u. ( ran ( x e. ran R |-> { y e. ran R | -. y `' R x } ) u. ran ( x e. ran R |-> { y e. ran R | -. x `' R y } ) ) ) = ( { dom R } u. ( ran ( x e. dom R |-> { y e. dom R | -. y R x } ) u. ran ( x e. dom R |-> { y e. dom R | -. x R y } ) ) ) ) | 
						
							| 23 | 22 | fveq2d |  |-  ( R e. PosetRel -> ( fi ` ( { ran R } u. ( ran ( x e. ran R |-> { y e. ran R | -. y `' R x } ) u. ran ( x e. ran R |-> { y e. ran R | -. x `' R y } ) ) ) ) = ( fi ` ( { dom R } u. ( ran ( x e. dom R |-> { y e. dom R | -. y R x } ) u. ran ( x e. dom R |-> { y e. dom R | -. x R y } ) ) ) ) ) | 
						
							| 24 | 23 | fveq2d |  |-  ( R e. PosetRel -> ( topGen ` ( fi ` ( { ran R } u. ( ran ( x e. ran R |-> { y e. ran R | -. y `' R x } ) u. ran ( x e. ran R |-> { y e. ran R | -. x `' R y } ) ) ) ) ) = ( topGen ` ( fi ` ( { dom R } u. ( ran ( x e. dom R |-> { y e. dom R | -. y R x } ) u. ran ( x e. dom R |-> { y e. dom R | -. x R y } ) ) ) ) ) ) | 
						
							| 25 |  | cnvps |  |-  ( R e. PosetRel -> `' R e. PosetRel ) | 
						
							| 26 |  | df-rn |  |-  ran R = dom `' R | 
						
							| 27 |  | eqid |  |-  ran ( x e. ran R |-> { y e. ran R | -. y `' R x } ) = ran ( x e. ran R |-> { y e. ran R | -. y `' R x } ) | 
						
							| 28 |  | eqid |  |-  ran ( x e. ran R |-> { y e. ran R | -. x `' R y } ) = ran ( x e. ran R |-> { y e. ran R | -. x `' R y } ) | 
						
							| 29 | 26 27 28 | ordtval |  |-  ( `' R e. PosetRel -> ( ordTop ` `' R ) = ( topGen ` ( fi ` ( { ran R } u. ( ran ( x e. ran R |-> { y e. ran R | -. y `' R x } ) u. ran ( x e. ran R |-> { y e. ran R | -. x `' R y } ) ) ) ) ) ) | 
						
							| 30 | 25 29 | syl |  |-  ( R e. PosetRel -> ( ordTop ` `' R ) = ( topGen ` ( fi ` ( { ran R } u. ( ran ( x e. ran R |-> { y e. ran R | -. y `' R x } ) u. ran ( x e. ran R |-> { y e. ran R | -. x `' R y } ) ) ) ) ) ) | 
						
							| 31 |  | eqid |  |-  ran ( x e. dom R |-> { y e. dom R | -. y R x } ) = ran ( x e. dom R |-> { y e. dom R | -. y R x } ) | 
						
							| 32 |  | eqid |  |-  ran ( x e. dom R |-> { y e. dom R | -. x R y } ) = ran ( x e. dom R |-> { y e. dom R | -. x R y } ) | 
						
							| 33 | 1 31 32 | ordtval |  |-  ( R e. PosetRel -> ( ordTop ` R ) = ( topGen ` ( fi ` ( { dom R } u. ( ran ( x e. dom R |-> { y e. dom R | -. y R x } ) u. ran ( x e. dom R |-> { y e. dom R | -. x R y } ) ) ) ) ) ) | 
						
							| 34 | 24 30 33 | 3eqtr4d |  |-  ( R e. PosetRel -> ( ordTop ` `' R ) = ( ordTop ` R ) ) |