Step |
Hyp |
Ref |
Expression |
1 |
|
ordthmeo.1 |
|- X = dom R |
2 |
|
ordthmeo.2 |
|- Y = dom S |
3 |
1 2
|
ordthmeolem |
|- ( ( R e. V /\ S e. W /\ F Isom R , S ( X , Y ) ) -> F e. ( ( ordTop ` R ) Cn ( ordTop ` S ) ) ) |
4 |
|
isocnv |
|- ( F Isom R , S ( X , Y ) -> `' F Isom S , R ( Y , X ) ) |
5 |
2 1
|
ordthmeolem |
|- ( ( S e. W /\ R e. V /\ `' F Isom S , R ( Y , X ) ) -> `' F e. ( ( ordTop ` S ) Cn ( ordTop ` R ) ) ) |
6 |
5
|
3com12 |
|- ( ( R e. V /\ S e. W /\ `' F Isom S , R ( Y , X ) ) -> `' F e. ( ( ordTop ` S ) Cn ( ordTop ` R ) ) ) |
7 |
4 6
|
syl3an3 |
|- ( ( R e. V /\ S e. W /\ F Isom R , S ( X , Y ) ) -> `' F e. ( ( ordTop ` S ) Cn ( ordTop ` R ) ) ) |
8 |
|
ishmeo |
|- ( F e. ( ( ordTop ` R ) Homeo ( ordTop ` S ) ) <-> ( F e. ( ( ordTop ` R ) Cn ( ordTop ` S ) ) /\ `' F e. ( ( ordTop ` S ) Cn ( ordTop ` R ) ) ) ) |
9 |
3 7 8
|
sylanbrc |
|- ( ( R e. V /\ S e. W /\ F Isom R , S ( X , Y ) ) -> F e. ( ( ordTop ` R ) Homeo ( ordTop ` S ) ) ) |