| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ordsseleq |
|- ( ( Ord A /\ Ord B ) -> ( A C_ B <-> ( A e. B \/ A = B ) ) ) |
| 2 |
|
ordn2lp |
|- ( Ord A -> -. ( A e. B /\ B e. A ) ) |
| 3 |
|
imnan |
|- ( ( A e. B -> -. B e. A ) <-> -. ( A e. B /\ B e. A ) ) |
| 4 |
2 3
|
sylibr |
|- ( Ord A -> ( A e. B -> -. B e. A ) ) |
| 5 |
|
ordirr |
|- ( Ord B -> -. B e. B ) |
| 6 |
|
eleq2 |
|- ( A = B -> ( B e. A <-> B e. B ) ) |
| 7 |
6
|
notbid |
|- ( A = B -> ( -. B e. A <-> -. B e. B ) ) |
| 8 |
5 7
|
syl5ibrcom |
|- ( Ord B -> ( A = B -> -. B e. A ) ) |
| 9 |
4 8
|
jaao |
|- ( ( Ord A /\ Ord B ) -> ( ( A e. B \/ A = B ) -> -. B e. A ) ) |
| 10 |
|
ordtri3or |
|- ( ( Ord A /\ Ord B ) -> ( A e. B \/ A = B \/ B e. A ) ) |
| 11 |
|
df-3or |
|- ( ( A e. B \/ A = B \/ B e. A ) <-> ( ( A e. B \/ A = B ) \/ B e. A ) ) |
| 12 |
10 11
|
sylib |
|- ( ( Ord A /\ Ord B ) -> ( ( A e. B \/ A = B ) \/ B e. A ) ) |
| 13 |
12
|
orcomd |
|- ( ( Ord A /\ Ord B ) -> ( B e. A \/ ( A e. B \/ A = B ) ) ) |
| 14 |
13
|
ord |
|- ( ( Ord A /\ Ord B ) -> ( -. B e. A -> ( A e. B \/ A = B ) ) ) |
| 15 |
9 14
|
impbid |
|- ( ( Ord A /\ Ord B ) -> ( ( A e. B \/ A = B ) <-> -. B e. A ) ) |
| 16 |
1 15
|
bitrd |
|- ( ( Ord A /\ Ord B ) -> ( A C_ B <-> -. B e. A ) ) |