Step |
Hyp |
Ref |
Expression |
1 |
|
ordsseleq |
|- ( ( Ord B /\ Ord A ) -> ( B C_ A <-> ( B e. A \/ B = A ) ) ) |
2 |
|
eqcom |
|- ( B = A <-> A = B ) |
3 |
2
|
orbi2i |
|- ( ( B e. A \/ B = A ) <-> ( B e. A \/ A = B ) ) |
4 |
|
orcom |
|- ( ( B e. A \/ A = B ) <-> ( A = B \/ B e. A ) ) |
5 |
3 4
|
bitri |
|- ( ( B e. A \/ B = A ) <-> ( A = B \/ B e. A ) ) |
6 |
1 5
|
bitrdi |
|- ( ( Ord B /\ Ord A ) -> ( B C_ A <-> ( A = B \/ B e. A ) ) ) |
7 |
|
ordtri1 |
|- ( ( Ord B /\ Ord A ) -> ( B C_ A <-> -. A e. B ) ) |
8 |
6 7
|
bitr3d |
|- ( ( Ord B /\ Ord A ) -> ( ( A = B \/ B e. A ) <-> -. A e. B ) ) |
9 |
8
|
ancoms |
|- ( ( Ord A /\ Ord B ) -> ( ( A = B \/ B e. A ) <-> -. A e. B ) ) |
10 |
9
|
con2bid |
|- ( ( Ord A /\ Ord B ) -> ( A e. B <-> -. ( A = B \/ B e. A ) ) ) |