Description: A trichotomy law for ordinal classes. (Contributed by NM, 13-Sep-2003) (Proof shortened by Andrew Salmon, 12-Aug-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | ordtri2or | |- ( ( Ord A /\ Ord B ) -> ( A e. B \/ B C_ A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordtri1 | |- ( ( Ord B /\ Ord A ) -> ( B C_ A <-> -. A e. B ) ) |
|
2 | 1 | ancoms | |- ( ( Ord A /\ Ord B ) -> ( B C_ A <-> -. A e. B ) ) |
3 | 2 | biimprd | |- ( ( Ord A /\ Ord B ) -> ( -. A e. B -> B C_ A ) ) |
4 | 3 | orrd | |- ( ( Ord A /\ Ord B ) -> ( A e. B \/ B C_ A ) ) |