Metamath Proof Explorer


Theorem ordtri2or2

Description: A trichotomy law for ordinal classes. (Contributed by NM, 2-Nov-2003)

Ref Expression
Assertion ordtri2or2
|- ( ( Ord A /\ Ord B ) -> ( A C_ B \/ B C_ A ) )

Proof

Step Hyp Ref Expression
1 ordtri2or
 |-  ( ( Ord A /\ Ord B ) -> ( A e. B \/ B C_ A ) )
2 ordelss
 |-  ( ( Ord B /\ A e. B ) -> A C_ B )
3 2 ex
 |-  ( Ord B -> ( A e. B -> A C_ B ) )
4 3 orim1d
 |-  ( Ord B -> ( ( A e. B \/ B C_ A ) -> ( A C_ B \/ B C_ A ) ) )
5 4 adantl
 |-  ( ( Ord A /\ Ord B ) -> ( ( A e. B \/ B C_ A ) -> ( A C_ B \/ B C_ A ) ) )
6 1 5 mpd
 |-  ( ( Ord A /\ Ord B ) -> ( A C_ B \/ B C_ A ) )