Step |
Hyp |
Ref |
Expression |
1 |
|
ordin |
|- ( ( Ord A /\ Ord B ) -> Ord ( A i^i B ) ) |
2 |
|
ordirr |
|- ( Ord ( A i^i B ) -> -. ( A i^i B ) e. ( A i^i B ) ) |
3 |
1 2
|
syl |
|- ( ( Ord A /\ Ord B ) -> -. ( A i^i B ) e. ( A i^i B ) ) |
4 |
|
ianor |
|- ( -. ( ( A i^i B ) e. A /\ ( B i^i A ) e. B ) <-> ( -. ( A i^i B ) e. A \/ -. ( B i^i A ) e. B ) ) |
5 |
|
elin |
|- ( ( A i^i B ) e. ( A i^i B ) <-> ( ( A i^i B ) e. A /\ ( A i^i B ) e. B ) ) |
6 |
|
incom |
|- ( A i^i B ) = ( B i^i A ) |
7 |
6
|
eleq1i |
|- ( ( A i^i B ) e. B <-> ( B i^i A ) e. B ) |
8 |
7
|
anbi2i |
|- ( ( ( A i^i B ) e. A /\ ( A i^i B ) e. B ) <-> ( ( A i^i B ) e. A /\ ( B i^i A ) e. B ) ) |
9 |
5 8
|
bitri |
|- ( ( A i^i B ) e. ( A i^i B ) <-> ( ( A i^i B ) e. A /\ ( B i^i A ) e. B ) ) |
10 |
4 9
|
xchnxbir |
|- ( -. ( A i^i B ) e. ( A i^i B ) <-> ( -. ( A i^i B ) e. A \/ -. ( B i^i A ) e. B ) ) |
11 |
3 10
|
sylib |
|- ( ( Ord A /\ Ord B ) -> ( -. ( A i^i B ) e. A \/ -. ( B i^i A ) e. B ) ) |
12 |
|
inss1 |
|- ( A i^i B ) C_ A |
13 |
|
ordsseleq |
|- ( ( Ord ( A i^i B ) /\ Ord A ) -> ( ( A i^i B ) C_ A <-> ( ( A i^i B ) e. A \/ ( A i^i B ) = A ) ) ) |
14 |
12 13
|
mpbii |
|- ( ( Ord ( A i^i B ) /\ Ord A ) -> ( ( A i^i B ) e. A \/ ( A i^i B ) = A ) ) |
15 |
1 14
|
sylan |
|- ( ( ( Ord A /\ Ord B ) /\ Ord A ) -> ( ( A i^i B ) e. A \/ ( A i^i B ) = A ) ) |
16 |
15
|
anabss1 |
|- ( ( Ord A /\ Ord B ) -> ( ( A i^i B ) e. A \/ ( A i^i B ) = A ) ) |
17 |
16
|
ord |
|- ( ( Ord A /\ Ord B ) -> ( -. ( A i^i B ) e. A -> ( A i^i B ) = A ) ) |
18 |
|
df-ss |
|- ( A C_ B <-> ( A i^i B ) = A ) |
19 |
17 18
|
syl6ibr |
|- ( ( Ord A /\ Ord B ) -> ( -. ( A i^i B ) e. A -> A C_ B ) ) |
20 |
|
ordin |
|- ( ( Ord B /\ Ord A ) -> Ord ( B i^i A ) ) |
21 |
|
inss1 |
|- ( B i^i A ) C_ B |
22 |
|
ordsseleq |
|- ( ( Ord ( B i^i A ) /\ Ord B ) -> ( ( B i^i A ) C_ B <-> ( ( B i^i A ) e. B \/ ( B i^i A ) = B ) ) ) |
23 |
21 22
|
mpbii |
|- ( ( Ord ( B i^i A ) /\ Ord B ) -> ( ( B i^i A ) e. B \/ ( B i^i A ) = B ) ) |
24 |
20 23
|
sylan |
|- ( ( ( Ord B /\ Ord A ) /\ Ord B ) -> ( ( B i^i A ) e. B \/ ( B i^i A ) = B ) ) |
25 |
24
|
anabss4 |
|- ( ( Ord A /\ Ord B ) -> ( ( B i^i A ) e. B \/ ( B i^i A ) = B ) ) |
26 |
25
|
ord |
|- ( ( Ord A /\ Ord B ) -> ( -. ( B i^i A ) e. B -> ( B i^i A ) = B ) ) |
27 |
|
df-ss |
|- ( B C_ A <-> ( B i^i A ) = B ) |
28 |
26 27
|
syl6ibr |
|- ( ( Ord A /\ Ord B ) -> ( -. ( B i^i A ) e. B -> B C_ A ) ) |
29 |
19 28
|
orim12d |
|- ( ( Ord A /\ Ord B ) -> ( ( -. ( A i^i B ) e. A \/ -. ( B i^i A ) e. B ) -> ( A C_ B \/ B C_ A ) ) ) |
30 |
11 29
|
mpd |
|- ( ( Ord A /\ Ord B ) -> ( A C_ B \/ B C_ A ) ) |
31 |
|
sspsstri |
|- ( ( A C_ B \/ B C_ A ) <-> ( A C. B \/ A = B \/ B C. A ) ) |
32 |
30 31
|
sylib |
|- ( ( Ord A /\ Ord B ) -> ( A C. B \/ A = B \/ B C. A ) ) |
33 |
|
ordelpss |
|- ( ( Ord A /\ Ord B ) -> ( A e. B <-> A C. B ) ) |
34 |
|
biidd |
|- ( ( Ord A /\ Ord B ) -> ( A = B <-> A = B ) ) |
35 |
|
ordelpss |
|- ( ( Ord B /\ Ord A ) -> ( B e. A <-> B C. A ) ) |
36 |
35
|
ancoms |
|- ( ( Ord A /\ Ord B ) -> ( B e. A <-> B C. A ) ) |
37 |
33 34 36
|
3orbi123d |
|- ( ( Ord A /\ Ord B ) -> ( ( A e. B \/ A = B \/ B e. A ) <-> ( A C. B \/ A = B \/ B C. A ) ) ) |
38 |
32 37
|
mpbird |
|- ( ( Ord A /\ Ord B ) -> ( A e. B \/ A = B \/ B e. A ) ) |