Description: The order topology is a topology. (Contributed by Mario Carneiro, 3-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | ordttop | |- ( R e. V -> ( ordTop ` R ) e. Top ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |- dom R = dom R |
|
2 | 1 | ordttopon | |- ( R e. V -> ( ordTop ` R ) e. ( TopOn ` dom R ) ) |
3 | topontop | |- ( ( ordTop ` R ) e. ( TopOn ` dom R ) -> ( ordTop ` R ) e. Top ) |
|
4 | 2 3 | syl | |- ( R e. V -> ( ordTop ` R ) e. Top ) |