| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ordtypelem.1 |
|- F = recs ( G ) |
| 2 |
|
ordtypelem.2 |
|- C = { w e. A | A. j e. ran h j R w } |
| 3 |
|
ordtypelem.3 |
|- G = ( h e. _V |-> ( iota_ v e. C A. u e. C -. u R v ) ) |
| 4 |
|
ordtypelem.5 |
|- T = { x e. On | E. t e. A A. z e. ( F " x ) z R t } |
| 5 |
|
ordtypelem.6 |
|- O = OrdIso ( R , A ) |
| 6 |
|
ordtypelem.7 |
|- ( ph -> R We A ) |
| 7 |
|
ordtypelem.8 |
|- ( ph -> R Se A ) |
| 8 |
1
|
tfr1a |
|- ( Fun F /\ Lim dom F ) |
| 9 |
8
|
simpli |
|- Fun F |
| 10 |
|
funres |
|- ( Fun F -> Fun ( F |` T ) ) |
| 11 |
9 10
|
mp1i |
|- ( ph -> Fun ( F |` T ) ) |
| 12 |
11
|
funfnd |
|- ( ph -> ( F |` T ) Fn dom ( F |` T ) ) |
| 13 |
|
dmres |
|- dom ( F |` T ) = ( T i^i dom F ) |
| 14 |
13
|
fneq2i |
|- ( ( F |` T ) Fn dom ( F |` T ) <-> ( F |` T ) Fn ( T i^i dom F ) ) |
| 15 |
12 14
|
sylib |
|- ( ph -> ( F |` T ) Fn ( T i^i dom F ) ) |
| 16 |
|
simpr |
|- ( ( ph /\ a e. ( T i^i dom F ) ) -> a e. ( T i^i dom F ) ) |
| 17 |
16
|
elin1d |
|- ( ( ph /\ a e. ( T i^i dom F ) ) -> a e. T ) |
| 18 |
17
|
fvresd |
|- ( ( ph /\ a e. ( T i^i dom F ) ) -> ( ( F |` T ) ` a ) = ( F ` a ) ) |
| 19 |
|
ssrab2 |
|- { v e. { w e. A | A. j e. ( F " a ) j R w } | A. u e. { w e. A | A. j e. ( F " a ) j R w } -. u R v } C_ { w e. A | A. j e. ( F " a ) j R w } |
| 20 |
|
ssrab2 |
|- { w e. A | A. j e. ( F " a ) j R w } C_ A |
| 21 |
19 20
|
sstri |
|- { v e. { w e. A | A. j e. ( F " a ) j R w } | A. u e. { w e. A | A. j e. ( F " a ) j R w } -. u R v } C_ A |
| 22 |
1 2 3 4 5 6 7
|
ordtypelem3 |
|- ( ( ph /\ a e. ( T i^i dom F ) ) -> ( F ` a ) e. { v e. { w e. A | A. j e. ( F " a ) j R w } | A. u e. { w e. A | A. j e. ( F " a ) j R w } -. u R v } ) |
| 23 |
21 22
|
sselid |
|- ( ( ph /\ a e. ( T i^i dom F ) ) -> ( F ` a ) e. A ) |
| 24 |
18 23
|
eqeltrd |
|- ( ( ph /\ a e. ( T i^i dom F ) ) -> ( ( F |` T ) ` a ) e. A ) |
| 25 |
24
|
ralrimiva |
|- ( ph -> A. a e. ( T i^i dom F ) ( ( F |` T ) ` a ) e. A ) |
| 26 |
|
ffnfv |
|- ( ( F |` T ) : ( T i^i dom F ) --> A <-> ( ( F |` T ) Fn ( T i^i dom F ) /\ A. a e. ( T i^i dom F ) ( ( F |` T ) ` a ) e. A ) ) |
| 27 |
15 25 26
|
sylanbrc |
|- ( ph -> ( F |` T ) : ( T i^i dom F ) --> A ) |
| 28 |
1 2 3 4 5 6 7
|
ordtypelem1 |
|- ( ph -> O = ( F |` T ) ) |
| 29 |
28
|
feq1d |
|- ( ph -> ( O : ( T i^i dom F ) --> A <-> ( F |` T ) : ( T i^i dom F ) --> A ) ) |
| 30 |
27 29
|
mpbird |
|- ( ph -> O : ( T i^i dom F ) --> A ) |