Step |
Hyp |
Ref |
Expression |
1 |
|
ordtypelem.1 |
|- F = recs ( G ) |
2 |
|
ordtypelem.2 |
|- C = { w e. A | A. j e. ran h j R w } |
3 |
|
ordtypelem.3 |
|- G = ( h e. _V |-> ( iota_ v e. C A. u e. C -. u R v ) ) |
4 |
|
ordtypelem.5 |
|- T = { x e. On | E. t e. A A. z e. ( F " x ) z R t } |
5 |
|
ordtypelem.6 |
|- O = OrdIso ( R , A ) |
6 |
|
ordtypelem.7 |
|- ( ph -> R We A ) |
7 |
|
ordtypelem.8 |
|- ( ph -> R Se A ) |
8 |
|
fveq2 |
|- ( a = N -> ( F ` a ) = ( F ` N ) ) |
9 |
8
|
breq1d |
|- ( a = N -> ( ( F ` a ) R ( F ` M ) <-> ( F ` N ) R ( F ` M ) ) ) |
10 |
|
ssrab2 |
|- { v e. { w e. A | A. j e. ( F " M ) j R w } | A. u e. { w e. A | A. j e. ( F " M ) j R w } -. u R v } C_ { w e. A | A. j e. ( F " M ) j R w } |
11 |
|
simpr |
|- ( ( ph /\ M e. dom O ) -> M e. dom O ) |
12 |
1 2 3 4 5 6 7
|
ordtypelem4 |
|- ( ph -> O : ( T i^i dom F ) --> A ) |
13 |
12
|
fdmd |
|- ( ph -> dom O = ( T i^i dom F ) ) |
14 |
13
|
adantr |
|- ( ( ph /\ M e. dom O ) -> dom O = ( T i^i dom F ) ) |
15 |
11 14
|
eleqtrd |
|- ( ( ph /\ M e. dom O ) -> M e. ( T i^i dom F ) ) |
16 |
1 2 3 4 5 6 7
|
ordtypelem3 |
|- ( ( ph /\ M e. ( T i^i dom F ) ) -> ( F ` M ) e. { v e. { w e. A | A. j e. ( F " M ) j R w } | A. u e. { w e. A | A. j e. ( F " M ) j R w } -. u R v } ) |
17 |
15 16
|
syldan |
|- ( ( ph /\ M e. dom O ) -> ( F ` M ) e. { v e. { w e. A | A. j e. ( F " M ) j R w } | A. u e. { w e. A | A. j e. ( F " M ) j R w } -. u R v } ) |
18 |
10 17
|
sselid |
|- ( ( ph /\ M e. dom O ) -> ( F ` M ) e. { w e. A | A. j e. ( F " M ) j R w } ) |
19 |
|
breq2 |
|- ( w = ( F ` M ) -> ( j R w <-> j R ( F ` M ) ) ) |
20 |
19
|
ralbidv |
|- ( w = ( F ` M ) -> ( A. j e. ( F " M ) j R w <-> A. j e. ( F " M ) j R ( F ` M ) ) ) |
21 |
20
|
elrab |
|- ( ( F ` M ) e. { w e. A | A. j e. ( F " M ) j R w } <-> ( ( F ` M ) e. A /\ A. j e. ( F " M ) j R ( F ` M ) ) ) |
22 |
21
|
simprbi |
|- ( ( F ` M ) e. { w e. A | A. j e. ( F " M ) j R w } -> A. j e. ( F " M ) j R ( F ` M ) ) |
23 |
18 22
|
syl |
|- ( ( ph /\ M e. dom O ) -> A. j e. ( F " M ) j R ( F ` M ) ) |
24 |
1
|
tfr1a |
|- ( Fun F /\ Lim dom F ) |
25 |
24
|
simpli |
|- Fun F |
26 |
|
funfn |
|- ( Fun F <-> F Fn dom F ) |
27 |
25 26
|
mpbi |
|- F Fn dom F |
28 |
24
|
simpri |
|- Lim dom F |
29 |
|
limord |
|- ( Lim dom F -> Ord dom F ) |
30 |
28 29
|
ax-mp |
|- Ord dom F |
31 |
|
inss2 |
|- ( T i^i dom F ) C_ dom F |
32 |
13 31
|
eqsstrdi |
|- ( ph -> dom O C_ dom F ) |
33 |
32
|
sselda |
|- ( ( ph /\ M e. dom O ) -> M e. dom F ) |
34 |
|
ordelss |
|- ( ( Ord dom F /\ M e. dom F ) -> M C_ dom F ) |
35 |
30 33 34
|
sylancr |
|- ( ( ph /\ M e. dom O ) -> M C_ dom F ) |
36 |
|
breq1 |
|- ( j = ( F ` a ) -> ( j R ( F ` M ) <-> ( F ` a ) R ( F ` M ) ) ) |
37 |
36
|
ralima |
|- ( ( F Fn dom F /\ M C_ dom F ) -> ( A. j e. ( F " M ) j R ( F ` M ) <-> A. a e. M ( F ` a ) R ( F ` M ) ) ) |
38 |
27 35 37
|
sylancr |
|- ( ( ph /\ M e. dom O ) -> ( A. j e. ( F " M ) j R ( F ` M ) <-> A. a e. M ( F ` a ) R ( F ` M ) ) ) |
39 |
23 38
|
mpbid |
|- ( ( ph /\ M e. dom O ) -> A. a e. M ( F ` a ) R ( F ` M ) ) |
40 |
39
|
adantrr |
|- ( ( ph /\ ( M e. dom O /\ N e. M ) ) -> A. a e. M ( F ` a ) R ( F ` M ) ) |
41 |
|
simprr |
|- ( ( ph /\ ( M e. dom O /\ N e. M ) ) -> N e. M ) |
42 |
9 40 41
|
rspcdva |
|- ( ( ph /\ ( M e. dom O /\ N e. M ) ) -> ( F ` N ) R ( F ` M ) ) |
43 |
1 2 3 4 5 6 7
|
ordtypelem1 |
|- ( ph -> O = ( F |` T ) ) |
44 |
43
|
adantr |
|- ( ( ph /\ ( M e. dom O /\ N e. M ) ) -> O = ( F |` T ) ) |
45 |
44
|
fveq1d |
|- ( ( ph /\ ( M e. dom O /\ N e. M ) ) -> ( O ` N ) = ( ( F |` T ) ` N ) ) |
46 |
1 2 3 4 5 6 7
|
ordtypelem2 |
|- ( ph -> Ord T ) |
47 |
|
inss1 |
|- ( T i^i dom F ) C_ T |
48 |
13 47
|
eqsstrdi |
|- ( ph -> dom O C_ T ) |
49 |
48
|
sselda |
|- ( ( ph /\ M e. dom O ) -> M e. T ) |
50 |
49
|
adantrr |
|- ( ( ph /\ ( M e. dom O /\ N e. M ) ) -> M e. T ) |
51 |
|
ordelss |
|- ( ( Ord T /\ M e. T ) -> M C_ T ) |
52 |
46 50 51
|
syl2an2r |
|- ( ( ph /\ ( M e. dom O /\ N e. M ) ) -> M C_ T ) |
53 |
52 41
|
sseldd |
|- ( ( ph /\ ( M e. dom O /\ N e. M ) ) -> N e. T ) |
54 |
53
|
fvresd |
|- ( ( ph /\ ( M e. dom O /\ N e. M ) ) -> ( ( F |` T ) ` N ) = ( F ` N ) ) |
55 |
45 54
|
eqtrd |
|- ( ( ph /\ ( M e. dom O /\ N e. M ) ) -> ( O ` N ) = ( F ` N ) ) |
56 |
44
|
fveq1d |
|- ( ( ph /\ ( M e. dom O /\ N e. M ) ) -> ( O ` M ) = ( ( F |` T ) ` M ) ) |
57 |
50
|
fvresd |
|- ( ( ph /\ ( M e. dom O /\ N e. M ) ) -> ( ( F |` T ) ` M ) = ( F ` M ) ) |
58 |
56 57
|
eqtrd |
|- ( ( ph /\ ( M e. dom O /\ N e. M ) ) -> ( O ` M ) = ( F ` M ) ) |
59 |
42 55 58
|
3brtr4d |
|- ( ( ph /\ ( M e. dom O /\ N e. M ) ) -> ( O ` N ) R ( O ` M ) ) |
60 |
59
|
expr |
|- ( ( ph /\ M e. dom O ) -> ( N e. M -> ( O ` N ) R ( O ` M ) ) ) |