| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ordtypelem.1 |
|- F = recs ( G ) |
| 2 |
|
ordtypelem.2 |
|- C = { w e. A | A. j e. ran h j R w } |
| 3 |
|
ordtypelem.3 |
|- G = ( h e. _V |-> ( iota_ v e. C A. u e. C -. u R v ) ) |
| 4 |
|
ordtypelem.5 |
|- T = { x e. On | E. t e. A A. z e. ( F " x ) z R t } |
| 5 |
|
ordtypelem.6 |
|- O = OrdIso ( R , A ) |
| 6 |
|
ordtypelem.7 |
|- ( ph -> R We A ) |
| 7 |
|
ordtypelem.8 |
|- ( ph -> R Se A ) |
| 8 |
|
ordtypelem9.1 |
|- ( ph -> O e. V ) |
| 9 |
1 2 3 4 5 6 7
|
ordtypelem8 |
|- ( ph -> O Isom _E , R ( dom O , ran O ) ) |
| 10 |
1 2 3 4 5 6 7
|
ordtypelem4 |
|- ( ph -> O : ( T i^i dom F ) --> A ) |
| 11 |
10
|
frnd |
|- ( ph -> ran O C_ A ) |
| 12 |
1 2 3 4 5 6 7
|
ordtypelem2 |
|- ( ph -> Ord T ) |
| 13 |
|
ordirr |
|- ( Ord T -> -. T e. T ) |
| 14 |
12 13
|
syl |
|- ( ph -> -. T e. T ) |
| 15 |
1
|
tfr1a |
|- ( Fun F /\ Lim dom F ) |
| 16 |
15
|
simpri |
|- Lim dom F |
| 17 |
|
limord |
|- ( Lim dom F -> Ord dom F ) |
| 18 |
16 17
|
ax-mp |
|- Ord dom F |
| 19 |
1 2 3 4 5 6 7
|
ordtypelem1 |
|- ( ph -> O = ( F |` T ) ) |
| 20 |
8
|
elexd |
|- ( ph -> O e. _V ) |
| 21 |
19 20
|
eqeltrrd |
|- ( ph -> ( F |` T ) e. _V ) |
| 22 |
1
|
tfr2b |
|- ( Ord T -> ( T e. dom F <-> ( F |` T ) e. _V ) ) |
| 23 |
12 22
|
syl |
|- ( ph -> ( T e. dom F <-> ( F |` T ) e. _V ) ) |
| 24 |
21 23
|
mpbird |
|- ( ph -> T e. dom F ) |
| 25 |
|
ordelon |
|- ( ( Ord dom F /\ T e. dom F ) -> T e. On ) |
| 26 |
18 24 25
|
sylancr |
|- ( ph -> T e. On ) |
| 27 |
|
imaeq2 |
|- ( a = T -> ( F " a ) = ( F " T ) ) |
| 28 |
27
|
raleqdv |
|- ( a = T -> ( A. c e. ( F " a ) c R b <-> A. c e. ( F " T ) c R b ) ) |
| 29 |
28
|
rexbidv |
|- ( a = T -> ( E. b e. A A. c e. ( F " a ) c R b <-> E. b e. A A. c e. ( F " T ) c R b ) ) |
| 30 |
|
breq1 |
|- ( z = c -> ( z R t <-> c R t ) ) |
| 31 |
30
|
cbvralvw |
|- ( A. z e. ( F " x ) z R t <-> A. c e. ( F " x ) c R t ) |
| 32 |
|
breq2 |
|- ( t = b -> ( c R t <-> c R b ) ) |
| 33 |
32
|
ralbidv |
|- ( t = b -> ( A. c e. ( F " x ) c R t <-> A. c e. ( F " x ) c R b ) ) |
| 34 |
31 33
|
bitrid |
|- ( t = b -> ( A. z e. ( F " x ) z R t <-> A. c e. ( F " x ) c R b ) ) |
| 35 |
34
|
cbvrexvw |
|- ( E. t e. A A. z e. ( F " x ) z R t <-> E. b e. A A. c e. ( F " x ) c R b ) |
| 36 |
|
imaeq2 |
|- ( x = a -> ( F " x ) = ( F " a ) ) |
| 37 |
36
|
raleqdv |
|- ( x = a -> ( A. c e. ( F " x ) c R b <-> A. c e. ( F " a ) c R b ) ) |
| 38 |
37
|
rexbidv |
|- ( x = a -> ( E. b e. A A. c e. ( F " x ) c R b <-> E. b e. A A. c e. ( F " a ) c R b ) ) |
| 39 |
35 38
|
bitrid |
|- ( x = a -> ( E. t e. A A. z e. ( F " x ) z R t <-> E. b e. A A. c e. ( F " a ) c R b ) ) |
| 40 |
39
|
cbvrabv |
|- { x e. On | E. t e. A A. z e. ( F " x ) z R t } = { a e. On | E. b e. A A. c e. ( F " a ) c R b } |
| 41 |
4 40
|
eqtri |
|- T = { a e. On | E. b e. A A. c e. ( F " a ) c R b } |
| 42 |
29 41
|
elrab2 |
|- ( T e. T <-> ( T e. On /\ E. b e. A A. c e. ( F " T ) c R b ) ) |
| 43 |
42
|
baib |
|- ( T e. On -> ( T e. T <-> E. b e. A A. c e. ( F " T ) c R b ) ) |
| 44 |
26 43
|
syl |
|- ( ph -> ( T e. T <-> E. b e. A A. c e. ( F " T ) c R b ) ) |
| 45 |
14 44
|
mtbid |
|- ( ph -> -. E. b e. A A. c e. ( F " T ) c R b ) |
| 46 |
|
ralnex |
|- ( A. b e. A -. A. c e. ( F " T ) c R b <-> -. E. b e. A A. c e. ( F " T ) c R b ) |
| 47 |
45 46
|
sylibr |
|- ( ph -> A. b e. A -. A. c e. ( F " T ) c R b ) |
| 48 |
47
|
r19.21bi |
|- ( ( ph /\ b e. A ) -> -. A. c e. ( F " T ) c R b ) |
| 49 |
19
|
rneqd |
|- ( ph -> ran O = ran ( F |` T ) ) |
| 50 |
|
df-ima |
|- ( F " T ) = ran ( F |` T ) |
| 51 |
49 50
|
eqtr4di |
|- ( ph -> ran O = ( F " T ) ) |
| 52 |
51
|
adantr |
|- ( ( ph /\ b e. A ) -> ran O = ( F " T ) ) |
| 53 |
52
|
raleqdv |
|- ( ( ph /\ b e. A ) -> ( A. c e. ran O c R b <-> A. c e. ( F " T ) c R b ) ) |
| 54 |
10
|
ffund |
|- ( ph -> Fun O ) |
| 55 |
54
|
funfnd |
|- ( ph -> O Fn dom O ) |
| 56 |
55
|
adantr |
|- ( ( ph /\ b e. A ) -> O Fn dom O ) |
| 57 |
|
breq1 |
|- ( c = ( O ` m ) -> ( c R b <-> ( O ` m ) R b ) ) |
| 58 |
57
|
ralrn |
|- ( O Fn dom O -> ( A. c e. ran O c R b <-> A. m e. dom O ( O ` m ) R b ) ) |
| 59 |
56 58
|
syl |
|- ( ( ph /\ b e. A ) -> ( A. c e. ran O c R b <-> A. m e. dom O ( O ` m ) R b ) ) |
| 60 |
53 59
|
bitr3d |
|- ( ( ph /\ b e. A ) -> ( A. c e. ( F " T ) c R b <-> A. m e. dom O ( O ` m ) R b ) ) |
| 61 |
48 60
|
mtbid |
|- ( ( ph /\ b e. A ) -> -. A. m e. dom O ( O ` m ) R b ) |
| 62 |
|
rexnal |
|- ( E. m e. dom O -. ( O ` m ) R b <-> -. A. m e. dom O ( O ` m ) R b ) |
| 63 |
61 62
|
sylibr |
|- ( ( ph /\ b e. A ) -> E. m e. dom O -. ( O ` m ) R b ) |
| 64 |
1 2 3 4 5 6 7
|
ordtypelem7 |
|- ( ( ( ph /\ b e. A ) /\ m e. dom O ) -> ( ( O ` m ) R b \/ b e. ran O ) ) |
| 65 |
64
|
ord |
|- ( ( ( ph /\ b e. A ) /\ m e. dom O ) -> ( -. ( O ` m ) R b -> b e. ran O ) ) |
| 66 |
65
|
rexlimdva |
|- ( ( ph /\ b e. A ) -> ( E. m e. dom O -. ( O ` m ) R b -> b e. ran O ) ) |
| 67 |
63 66
|
mpd |
|- ( ( ph /\ b e. A ) -> b e. ran O ) |
| 68 |
11 67
|
eqelssd |
|- ( ph -> ran O = A ) |
| 69 |
|
isoeq5 |
|- ( ran O = A -> ( O Isom _E , R ( dom O , ran O ) <-> O Isom _E , R ( dom O , A ) ) ) |
| 70 |
68 69
|
syl |
|- ( ph -> ( O Isom _E , R ( dom O , ran O ) <-> O Isom _E , R ( dom O , A ) ) ) |
| 71 |
9 70
|
mpbid |
|- ( ph -> O Isom _E , R ( dom O , A ) ) |