Metamath Proof Explorer


Theorem orduninsuc

Description: An ordinal equal to its union is not a successor. (Contributed by NM, 18-Feb-2004)

Ref Expression
Assertion orduninsuc
|- ( Ord A -> ( A = U. A <-> -. E. x e. On A = suc x ) )

Proof

Step Hyp Ref Expression
1 ordeleqon
 |-  ( Ord A <-> ( A e. On \/ A = On ) )
2 id
 |-  ( A = if ( A e. On , A , (/) ) -> A = if ( A e. On , A , (/) ) )
3 unieq
 |-  ( A = if ( A e. On , A , (/) ) -> U. A = U. if ( A e. On , A , (/) ) )
4 2 3 eqeq12d
 |-  ( A = if ( A e. On , A , (/) ) -> ( A = U. A <-> if ( A e. On , A , (/) ) = U. if ( A e. On , A , (/) ) ) )
5 eqeq1
 |-  ( A = if ( A e. On , A , (/) ) -> ( A = suc x <-> if ( A e. On , A , (/) ) = suc x ) )
6 5 rexbidv
 |-  ( A = if ( A e. On , A , (/) ) -> ( E. x e. On A = suc x <-> E. x e. On if ( A e. On , A , (/) ) = suc x ) )
7 6 notbid
 |-  ( A = if ( A e. On , A , (/) ) -> ( -. E. x e. On A = suc x <-> -. E. x e. On if ( A e. On , A , (/) ) = suc x ) )
8 4 7 bibi12d
 |-  ( A = if ( A e. On , A , (/) ) -> ( ( A = U. A <-> -. E. x e. On A = suc x ) <-> ( if ( A e. On , A , (/) ) = U. if ( A e. On , A , (/) ) <-> -. E. x e. On if ( A e. On , A , (/) ) = suc x ) ) )
9 0elon
 |-  (/) e. On
10 9 elimel
 |-  if ( A e. On , A , (/) ) e. On
11 10 onuninsuci
 |-  ( if ( A e. On , A , (/) ) = U. if ( A e. On , A , (/) ) <-> -. E. x e. On if ( A e. On , A , (/) ) = suc x )
12 8 11 dedth
 |-  ( A e. On -> ( A = U. A <-> -. E. x e. On A = suc x ) )
13 unon
 |-  U. On = On
14 13 eqcomi
 |-  On = U. On
15 onprc
 |-  -. On e. _V
16 vex
 |-  x e. _V
17 16 sucex
 |-  suc x e. _V
18 eleq1
 |-  ( On = suc x -> ( On e. _V <-> suc x e. _V ) )
19 17 18 mpbiri
 |-  ( On = suc x -> On e. _V )
20 15 19 mto
 |-  -. On = suc x
21 20 a1i
 |-  ( x e. On -> -. On = suc x )
22 21 nrex
 |-  -. E. x e. On On = suc x
23 14 22 2th
 |-  ( On = U. On <-> -. E. x e. On On = suc x )
24 id
 |-  ( A = On -> A = On )
25 unieq
 |-  ( A = On -> U. A = U. On )
26 24 25 eqeq12d
 |-  ( A = On -> ( A = U. A <-> On = U. On ) )
27 eqeq1
 |-  ( A = On -> ( A = suc x <-> On = suc x ) )
28 27 rexbidv
 |-  ( A = On -> ( E. x e. On A = suc x <-> E. x e. On On = suc x ) )
29 28 notbid
 |-  ( A = On -> ( -. E. x e. On A = suc x <-> -. E. x e. On On = suc x ) )
30 26 29 bibi12d
 |-  ( A = On -> ( ( A = U. A <-> -. E. x e. On A = suc x ) <-> ( On = U. On <-> -. E. x e. On On = suc x ) ) )
31 23 30 mpbiri
 |-  ( A = On -> ( A = U. A <-> -. E. x e. On A = suc x ) )
32 12 31 jaoi
 |-  ( ( A e. On \/ A = On ) -> ( A = U. A <-> -. E. x e. On A = suc x ) )
33 1 32 sylbi
 |-  ( Ord A -> ( A = U. A <-> -. E. x e. On A = suc x ) )