Step |
Hyp |
Ref |
Expression |
1 |
|
ordeleqon |
|- ( Ord A <-> ( A e. On \/ A = On ) ) |
2 |
|
id |
|- ( A = if ( A e. On , A , (/) ) -> A = if ( A e. On , A , (/) ) ) |
3 |
|
unieq |
|- ( A = if ( A e. On , A , (/) ) -> U. A = U. if ( A e. On , A , (/) ) ) |
4 |
2 3
|
eqeq12d |
|- ( A = if ( A e. On , A , (/) ) -> ( A = U. A <-> if ( A e. On , A , (/) ) = U. if ( A e. On , A , (/) ) ) ) |
5 |
|
eqeq1 |
|- ( A = if ( A e. On , A , (/) ) -> ( A = suc x <-> if ( A e. On , A , (/) ) = suc x ) ) |
6 |
5
|
rexbidv |
|- ( A = if ( A e. On , A , (/) ) -> ( E. x e. On A = suc x <-> E. x e. On if ( A e. On , A , (/) ) = suc x ) ) |
7 |
6
|
notbid |
|- ( A = if ( A e. On , A , (/) ) -> ( -. E. x e. On A = suc x <-> -. E. x e. On if ( A e. On , A , (/) ) = suc x ) ) |
8 |
4 7
|
bibi12d |
|- ( A = if ( A e. On , A , (/) ) -> ( ( A = U. A <-> -. E. x e. On A = suc x ) <-> ( if ( A e. On , A , (/) ) = U. if ( A e. On , A , (/) ) <-> -. E. x e. On if ( A e. On , A , (/) ) = suc x ) ) ) |
9 |
|
0elon |
|- (/) e. On |
10 |
9
|
elimel |
|- if ( A e. On , A , (/) ) e. On |
11 |
10
|
onuninsuci |
|- ( if ( A e. On , A , (/) ) = U. if ( A e. On , A , (/) ) <-> -. E. x e. On if ( A e. On , A , (/) ) = suc x ) |
12 |
8 11
|
dedth |
|- ( A e. On -> ( A = U. A <-> -. E. x e. On A = suc x ) ) |
13 |
|
unon |
|- U. On = On |
14 |
13
|
eqcomi |
|- On = U. On |
15 |
|
onprc |
|- -. On e. _V |
16 |
|
vex |
|- x e. _V |
17 |
16
|
sucex |
|- suc x e. _V |
18 |
|
eleq1 |
|- ( On = suc x -> ( On e. _V <-> suc x e. _V ) ) |
19 |
17 18
|
mpbiri |
|- ( On = suc x -> On e. _V ) |
20 |
15 19
|
mto |
|- -. On = suc x |
21 |
20
|
a1i |
|- ( x e. On -> -. On = suc x ) |
22 |
21
|
nrex |
|- -. E. x e. On On = suc x |
23 |
14 22
|
2th |
|- ( On = U. On <-> -. E. x e. On On = suc x ) |
24 |
|
id |
|- ( A = On -> A = On ) |
25 |
|
unieq |
|- ( A = On -> U. A = U. On ) |
26 |
24 25
|
eqeq12d |
|- ( A = On -> ( A = U. A <-> On = U. On ) ) |
27 |
|
eqeq1 |
|- ( A = On -> ( A = suc x <-> On = suc x ) ) |
28 |
27
|
rexbidv |
|- ( A = On -> ( E. x e. On A = suc x <-> E. x e. On On = suc x ) ) |
29 |
28
|
notbid |
|- ( A = On -> ( -. E. x e. On A = suc x <-> -. E. x e. On On = suc x ) ) |
30 |
26 29
|
bibi12d |
|- ( A = On -> ( ( A = U. A <-> -. E. x e. On A = suc x ) <-> ( On = U. On <-> -. E. x e. On On = suc x ) ) ) |
31 |
23 30
|
mpbiri |
|- ( A = On -> ( A = U. A <-> -. E. x e. On A = suc x ) ) |
32 |
12 31
|
jaoi |
|- ( ( A e. On \/ A = On ) -> ( A = U. A <-> -. E. x e. On A = suc x ) ) |
33 |
1 32
|
sylbi |
|- ( Ord A -> ( A = U. A <-> -. E. x e. On A = suc x ) ) |