Metamath Proof Explorer


Theorem ordunisuc

Description: An ordinal class is equal to the union of its successor. (Contributed by NM, 10-Dec-2004) (Proof shortened by Andrew Salmon, 27-Aug-2011)

Ref Expression
Assertion ordunisuc
|- ( Ord A -> U. suc A = A )

Proof

Step Hyp Ref Expression
1 ordeleqon
 |-  ( Ord A <-> ( A e. On \/ A = On ) )
2 suceq
 |-  ( x = A -> suc x = suc A )
3 2 unieqd
 |-  ( x = A -> U. suc x = U. suc A )
4 id
 |-  ( x = A -> x = A )
5 3 4 eqeq12d
 |-  ( x = A -> ( U. suc x = x <-> U. suc A = A ) )
6 eloni
 |-  ( x e. On -> Ord x )
7 ordtr
 |-  ( Ord x -> Tr x )
8 6 7 syl
 |-  ( x e. On -> Tr x )
9 vex
 |-  x e. _V
10 9 unisuc
 |-  ( Tr x <-> U. suc x = x )
11 8 10 sylib
 |-  ( x e. On -> U. suc x = x )
12 5 11 vtoclga
 |-  ( A e. On -> U. suc A = A )
13 sucon
 |-  suc On = On
14 13 unieqi
 |-  U. suc On = U. On
15 unon
 |-  U. On = On
16 14 15 eqtri
 |-  U. suc On = On
17 suceq
 |-  ( A = On -> suc A = suc On )
18 17 unieqd
 |-  ( A = On -> U. suc A = U. suc On )
19 id
 |-  ( A = On -> A = On )
20 16 18 19 3eqtr4a
 |-  ( A = On -> U. suc A = A )
21 12 20 jaoi
 |-  ( ( A e. On \/ A = On ) -> U. suc A = A )
22 1 21 sylbi
 |-  ( Ord A -> U. suc A = A )