Metamath Proof Explorer


Theorem ordvdsmul

Description: If an integer divides either of two others, it divides their product. (Contributed by Paul Chapman, 17-Nov-2012) (Proof shortened by Mario Carneiro, 17-Jul-2014)

Ref Expression
Assertion ordvdsmul
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K || M \/ K || N ) -> K || ( M x. N ) ) )

Proof

Step Hyp Ref Expression
1 dvdsmultr1
 |-  ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K || M -> K || ( M x. N ) ) )
2 dvdsmultr2
 |-  ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K || N -> K || ( M x. N ) ) )
3 1 2 jaod
 |-  ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K || M \/ K || N ) -> K || ( M x. N ) ) )