| Step |
Hyp |
Ref |
Expression |
| 1 |
|
orduninsuc |
|- ( Ord A -> ( A = U. A <-> -. E. x e. On A = suc x ) ) |
| 2 |
1
|
biimprd |
|- ( Ord A -> ( -. E. x e. On A = suc x -> A = U. A ) ) |
| 3 |
|
unizlim |
|- ( Ord A -> ( A = U. A <-> ( A = (/) \/ Lim A ) ) ) |
| 4 |
2 3
|
sylibd |
|- ( Ord A -> ( -. E. x e. On A = suc x -> ( A = (/) \/ Lim A ) ) ) |
| 5 |
4
|
orrd |
|- ( Ord A -> ( E. x e. On A = suc x \/ ( A = (/) \/ Lim A ) ) ) |
| 6 |
|
3orass |
|- ( ( A = (/) \/ E. x e. On A = suc x \/ Lim A ) <-> ( A = (/) \/ ( E. x e. On A = suc x \/ Lim A ) ) ) |
| 7 |
|
or12 |
|- ( ( A = (/) \/ ( E. x e. On A = suc x \/ Lim A ) ) <-> ( E. x e. On A = suc x \/ ( A = (/) \/ Lim A ) ) ) |
| 8 |
6 7
|
bitri |
|- ( ( A = (/) \/ E. x e. On A = suc x \/ Lim A ) <-> ( E. x e. On A = suc x \/ ( A = (/) \/ Lim A ) ) ) |
| 9 |
5 8
|
sylibr |
|- ( Ord A -> ( A = (/) \/ E. x e. On A = suc x \/ Lim A ) ) |
| 10 |
|
ord0 |
|- Ord (/) |
| 11 |
|
ordeq |
|- ( A = (/) -> ( Ord A <-> Ord (/) ) ) |
| 12 |
10 11
|
mpbiri |
|- ( A = (/) -> Ord A ) |
| 13 |
|
onsuc |
|- ( x e. On -> suc x e. On ) |
| 14 |
|
eleq1 |
|- ( A = suc x -> ( A e. On <-> suc x e. On ) ) |
| 15 |
13 14
|
imbitrrid |
|- ( A = suc x -> ( x e. On -> A e. On ) ) |
| 16 |
|
eloni |
|- ( A e. On -> Ord A ) |
| 17 |
15 16
|
syl6com |
|- ( x e. On -> ( A = suc x -> Ord A ) ) |
| 18 |
17
|
rexlimiv |
|- ( E. x e. On A = suc x -> Ord A ) |
| 19 |
|
limord |
|- ( Lim A -> Ord A ) |
| 20 |
12 18 19
|
3jaoi |
|- ( ( A = (/) \/ E. x e. On A = suc x \/ Lim A ) -> Ord A ) |
| 21 |
9 20
|
impbii |
|- ( Ord A <-> ( A = (/) \/ E. x e. On A = suc x \/ Lim A ) ) |