Metamath Proof Explorer


Theorem orim12dALT

Description: Alternate proof of orim12d which does not depend on df-an . This is an illustration of the conservativity of definitions (definitions do not permit to prove additional theorems whose statements do not contain the defined symbol). (Contributed by Wolf Lammen, 8-Aug-2022) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses orim12dALT.1
|- ( ph -> ( ps -> ch ) )
orim12dALT.2
|- ( ph -> ( th -> ta ) )
Assertion orim12dALT
|- ( ph -> ( ( ps \/ th ) -> ( ch \/ ta ) ) )

Proof

Step Hyp Ref Expression
1 orim12dALT.1
 |-  ( ph -> ( ps -> ch ) )
2 orim12dALT.2
 |-  ( ph -> ( th -> ta ) )
3 pm2.53
 |-  ( ( ps \/ th ) -> ( -. ps -> th ) )
4 1 con3d
 |-  ( ph -> ( -. ch -> -. ps ) )
5 4 2 imim12d
 |-  ( ph -> ( ( -. ps -> th ) -> ( -. ch -> ta ) ) )
6 pm2.54
 |-  ( ( -. ch -> ta ) -> ( ch \/ ta ) )
7 3 5 6 syl56
 |-  ( ph -> ( ( ps \/ th ) -> ( ch \/ ta ) ) )