Description: Introduce disjunct to both sides of an implication. (Contributed by NM, 6-Jun-1994)
Ref | Expression | ||
---|---|---|---|
Hypothesis | orim1i.1 | |- ( ph -> ps ) |
|
Assertion | orim2i | |- ( ( ch \/ ph ) -> ( ch \/ ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orim1i.1 | |- ( ph -> ps ) |
|
2 | id | |- ( ch -> ch ) |
|
3 | 2 1 | orim12i | |- ( ( ch \/ ph ) -> ( ch \/ ps ) ) |