Description: Disjunction distributes over implication. (Contributed by Wolf Lammen, 5-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | orimdi | |- ( ( ph \/ ( ps -> ch ) ) <-> ( ( ph \/ ps ) -> ( ph \/ ch ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imdi | |- ( ( -. ph -> ( ps -> ch ) ) <-> ( ( -. ph -> ps ) -> ( -. ph -> ch ) ) ) |
|
| 2 | df-or | |- ( ( ph \/ ( ps -> ch ) ) <-> ( -. ph -> ( ps -> ch ) ) ) |
|
| 3 | df-or | |- ( ( ph \/ ps ) <-> ( -. ph -> ps ) ) |
|
| 4 | df-or | |- ( ( ph \/ ch ) <-> ( -. ph -> ch ) ) |
|
| 5 | 3 4 | imbi12i | |- ( ( ( ph \/ ps ) -> ( ph \/ ch ) ) <-> ( ( -. ph -> ps ) -> ( -. ph -> ch ) ) ) |
| 6 | 1 2 5 | 3bitr4i | |- ( ( ph \/ ( ps -> ch ) ) <-> ( ( ph \/ ps ) -> ( ph \/ ch ) ) ) |