Metamath Proof Explorer


Theorem orimdi

Description: Disjunction distributes over implication. (Contributed by Wolf Lammen, 5-Jan-2013)

Ref Expression
Assertion orimdi
|- ( ( ph \/ ( ps -> ch ) ) <-> ( ( ph \/ ps ) -> ( ph \/ ch ) ) )

Proof

Step Hyp Ref Expression
1 imdi
 |-  ( ( -. ph -> ( ps -> ch ) ) <-> ( ( -. ph -> ps ) -> ( -. ph -> ch ) ) )
2 df-or
 |-  ( ( ph \/ ( ps -> ch ) ) <-> ( -. ph -> ( ps -> ch ) ) )
3 df-or
 |-  ( ( ph \/ ps ) <-> ( -. ph -> ps ) )
4 df-or
 |-  ( ( ph \/ ch ) <-> ( -. ph -> ch ) )
5 3 4 imbi12i
 |-  ( ( ( ph \/ ps ) -> ( ph \/ ch ) ) <-> ( ( -. ph -> ps ) -> ( -. ph -> ch ) ) )
6 1 2 5 3bitr4i
 |-  ( ( ph \/ ( ps -> ch ) ) <-> ( ( ph \/ ps ) -> ( ph \/ ch ) ) )