Metamath Proof Explorer


Theorem ornld

Description: Selecting one statement from a disjunction if one of the disjuncted statements is false. (Contributed by AV, 6-Sep-2018) (Proof shortened by AV, 13-Oct-2018) (Proof shortened by Wolf Lammen, 19-Jan-2020)

Ref Expression
Assertion ornld
|- ( ph -> ( ( ( ph -> ( th \/ ta ) ) /\ -. th ) -> ta ) )

Proof

Step Hyp Ref Expression
1 pm3.35
 |-  ( ( ph /\ ( ph -> ( th \/ ta ) ) ) -> ( th \/ ta ) )
2 1 ord
 |-  ( ( ph /\ ( ph -> ( th \/ ta ) ) ) -> ( -. th -> ta ) )
3 2 expimpd
 |-  ( ph -> ( ( ( ph -> ( th \/ ta ) ) /\ -. th ) -> ta ) )