Metamath Proof Explorer


Theorem orordi

Description: Distribution of disjunction over disjunction. (Contributed by NM, 25-Feb-1995)

Ref Expression
Assertion orordi
|- ( ( ph \/ ( ps \/ ch ) ) <-> ( ( ph \/ ps ) \/ ( ph \/ ch ) ) )

Proof

Step Hyp Ref Expression
1 oridm
 |-  ( ( ph \/ ph ) <-> ph )
2 1 orbi1i
 |-  ( ( ( ph \/ ph ) \/ ( ps \/ ch ) ) <-> ( ph \/ ( ps \/ ch ) ) )
3 or4
 |-  ( ( ( ph \/ ph ) \/ ( ps \/ ch ) ) <-> ( ( ph \/ ps ) \/ ( ph \/ ch ) ) )
4 2 3 bitr3i
 |-  ( ( ph \/ ( ps \/ ch ) ) <-> ( ( ph \/ ps ) \/ ( ph \/ ch ) ) )