Metamath Proof Explorer


Theorem orordir

Description: Distribution of disjunction over disjunction. (Contributed by NM, 25-Feb-1995)

Ref Expression
Assertion orordir
|- ( ( ( ph \/ ps ) \/ ch ) <-> ( ( ph \/ ch ) \/ ( ps \/ ch ) ) )

Proof

Step Hyp Ref Expression
1 oridm
 |-  ( ( ch \/ ch ) <-> ch )
2 1 orbi2i
 |-  ( ( ( ph \/ ps ) \/ ( ch \/ ch ) ) <-> ( ( ph \/ ps ) \/ ch ) )
3 or4
 |-  ( ( ( ph \/ ps ) \/ ( ch \/ ch ) ) <-> ( ( ph \/ ch ) \/ ( ps \/ ch ) ) )
4 2 3 bitr3i
 |-  ( ( ( ph \/ ps ) \/ ch ) <-> ( ( ph \/ ch ) \/ ( ps \/ ch ) ) )