| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ssrin | 
							 |-  ( A C_ ( _|_ ` B ) -> ( A i^i B ) C_ ( ( _|_ ` B ) i^i B ) )  | 
						
						
							| 2 | 
							
								
							 | 
							incom | 
							 |-  ( ( _|_ ` B ) i^i B ) = ( B i^i ( _|_ ` B ) )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							sseqtrdi | 
							 |-  ( A C_ ( _|_ ` B ) -> ( A i^i B ) C_ ( B i^i ( _|_ ` B ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							ocin | 
							 |-  ( B e. SH -> ( B i^i ( _|_ ` B ) ) = 0H )  | 
						
						
							| 5 | 
							
								4
							 | 
							sseq2d | 
							 |-  ( B e. SH -> ( ( A i^i B ) C_ ( B i^i ( _|_ ` B ) ) <-> ( A i^i B ) C_ 0H ) )  | 
						
						
							| 6 | 
							
								3 5
							 | 
							imbitrid | 
							 |-  ( B e. SH -> ( A C_ ( _|_ ` B ) -> ( A i^i B ) C_ 0H ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							adantl | 
							 |-  ( ( A e. SH /\ B e. SH ) -> ( A C_ ( _|_ ` B ) -> ( A i^i B ) C_ 0H ) )  | 
						
						
							| 8 | 
							
								
							 | 
							shincl | 
							 |-  ( ( A e. SH /\ B e. SH ) -> ( A i^i B ) e. SH )  | 
						
						
							| 9 | 
							
								
							 | 
							sh0le | 
							 |-  ( ( A i^i B ) e. SH -> 0H C_ ( A i^i B ) )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							syl | 
							 |-  ( ( A e. SH /\ B e. SH ) -> 0H C_ ( A i^i B ) )  | 
						
						
							| 11 | 
							
								7 10
							 | 
							jctird | 
							 |-  ( ( A e. SH /\ B e. SH ) -> ( A C_ ( _|_ ` B ) -> ( ( A i^i B ) C_ 0H /\ 0H C_ ( A i^i B ) ) ) )  | 
						
						
							| 12 | 
							
								
							 | 
							eqss | 
							 |-  ( ( A i^i B ) = 0H <-> ( ( A i^i B ) C_ 0H /\ 0H C_ ( A i^i B ) ) )  | 
						
						
							| 13 | 
							
								11 12
							 | 
							imbitrrdi | 
							 |-  ( ( A e. SH /\ B e. SH ) -> ( A C_ ( _|_ ` B ) -> ( A i^i B ) = 0H ) )  |