| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qrng.q |
|- Q = ( CCfld |`s QQ ) |
| 2 |
|
qabsabv.a |
|- A = ( AbsVal ` Q ) |
| 3 |
|
padic.j |
|- J = ( q e. Prime |-> ( x e. QQ |-> if ( x = 0 , 0 , ( q ^ -u ( q pCnt x ) ) ) ) ) |
| 4 |
|
ostth.k |
|- K = ( x e. QQ |-> if ( x = 0 , 0 , 1 ) ) |
| 5 |
|
ostth.1 |
|- ( ph -> F e. A ) |
| 6 |
|
ostth1.2 |
|- ( ph -> A. n e. NN -. 1 < ( F ` n ) ) |
| 7 |
|
ostth1.3 |
|- ( ph -> A. n e. Prime -. ( F ` n ) < 1 ) |
| 8 |
1
|
qdrng |
|- Q e. DivRing |
| 9 |
1
|
qrngbas |
|- QQ = ( Base ` Q ) |
| 10 |
1
|
qrng0 |
|- 0 = ( 0g ` Q ) |
| 11 |
2 9 10 4
|
abvtriv |
|- ( Q e. DivRing -> K e. A ) |
| 12 |
8 11
|
mp1i |
|- ( ph -> K e. A ) |
| 13 |
7
|
r19.21bi |
|- ( ( ph /\ n e. Prime ) -> -. ( F ` n ) < 1 ) |
| 14 |
|
prmnn |
|- ( n e. Prime -> n e. NN ) |
| 15 |
6
|
r19.21bi |
|- ( ( ph /\ n e. NN ) -> -. 1 < ( F ` n ) ) |
| 16 |
14 15
|
sylan2 |
|- ( ( ph /\ n e. Prime ) -> -. 1 < ( F ` n ) ) |
| 17 |
|
nnq |
|- ( n e. NN -> n e. QQ ) |
| 18 |
14 17
|
syl |
|- ( n e. Prime -> n e. QQ ) |
| 19 |
2 9
|
abvcl |
|- ( ( F e. A /\ n e. QQ ) -> ( F ` n ) e. RR ) |
| 20 |
5 18 19
|
syl2an |
|- ( ( ph /\ n e. Prime ) -> ( F ` n ) e. RR ) |
| 21 |
|
1re |
|- 1 e. RR |
| 22 |
|
lttri3 |
|- ( ( ( F ` n ) e. RR /\ 1 e. RR ) -> ( ( F ` n ) = 1 <-> ( -. ( F ` n ) < 1 /\ -. 1 < ( F ` n ) ) ) ) |
| 23 |
20 21 22
|
sylancl |
|- ( ( ph /\ n e. Prime ) -> ( ( F ` n ) = 1 <-> ( -. ( F ` n ) < 1 /\ -. 1 < ( F ` n ) ) ) ) |
| 24 |
13 16 23
|
mpbir2and |
|- ( ( ph /\ n e. Prime ) -> ( F ` n ) = 1 ) |
| 25 |
14
|
adantl |
|- ( ( ph /\ n e. Prime ) -> n e. NN ) |
| 26 |
|
eqeq1 |
|- ( x = n -> ( x = 0 <-> n = 0 ) ) |
| 27 |
26
|
ifbid |
|- ( x = n -> if ( x = 0 , 0 , 1 ) = if ( n = 0 , 0 , 1 ) ) |
| 28 |
|
c0ex |
|- 0 e. _V |
| 29 |
|
1ex |
|- 1 e. _V |
| 30 |
28 29
|
ifex |
|- if ( n = 0 , 0 , 1 ) e. _V |
| 31 |
27 4 30
|
fvmpt |
|- ( n e. QQ -> ( K ` n ) = if ( n = 0 , 0 , 1 ) ) |
| 32 |
17 31
|
syl |
|- ( n e. NN -> ( K ` n ) = if ( n = 0 , 0 , 1 ) ) |
| 33 |
|
nnne0 |
|- ( n e. NN -> n =/= 0 ) |
| 34 |
33
|
neneqd |
|- ( n e. NN -> -. n = 0 ) |
| 35 |
34
|
iffalsed |
|- ( n e. NN -> if ( n = 0 , 0 , 1 ) = 1 ) |
| 36 |
32 35
|
eqtrd |
|- ( n e. NN -> ( K ` n ) = 1 ) |
| 37 |
25 36
|
syl |
|- ( ( ph /\ n e. Prime ) -> ( K ` n ) = 1 ) |
| 38 |
24 37
|
eqtr4d |
|- ( ( ph /\ n e. Prime ) -> ( F ` n ) = ( K ` n ) ) |
| 39 |
1 2 5 12 38
|
ostthlem2 |
|- ( ph -> F = K ) |