| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ostth2lem1.1 |
|- ( ph -> A e. RR ) |
| 2 |
|
ostth2lem1.2 |
|- ( ph -> B e. RR ) |
| 3 |
|
ostth2lem1.3 |
|- ( ( ph /\ n e. NN ) -> ( A ^ n ) <_ ( n x. B ) ) |
| 4 |
|
2re |
|- 2 e. RR |
| 5 |
2
|
adantr |
|- ( ( ph /\ 1 < A ) -> B e. RR ) |
| 6 |
|
remulcl |
|- ( ( 2 e. RR /\ B e. RR ) -> ( 2 x. B ) e. RR ) |
| 7 |
4 5 6
|
sylancr |
|- ( ( ph /\ 1 < A ) -> ( 2 x. B ) e. RR ) |
| 8 |
|
simpr |
|- ( ( ph /\ 1 < A ) -> 1 < A ) |
| 9 |
|
1re |
|- 1 e. RR |
| 10 |
1
|
adantr |
|- ( ( ph /\ 1 < A ) -> A e. RR ) |
| 11 |
|
difrp |
|- ( ( 1 e. RR /\ A e. RR ) -> ( 1 < A <-> ( A - 1 ) e. RR+ ) ) |
| 12 |
9 10 11
|
sylancr |
|- ( ( ph /\ 1 < A ) -> ( 1 < A <-> ( A - 1 ) e. RR+ ) ) |
| 13 |
8 12
|
mpbid |
|- ( ( ph /\ 1 < A ) -> ( A - 1 ) e. RR+ ) |
| 14 |
7 13
|
rerpdivcld |
|- ( ( ph /\ 1 < A ) -> ( ( 2 x. B ) / ( A - 1 ) ) e. RR ) |
| 15 |
|
expnbnd |
|- ( ( ( ( 2 x. B ) / ( A - 1 ) ) e. RR /\ A e. RR /\ 1 < A ) -> E. k e. NN ( ( 2 x. B ) / ( A - 1 ) ) < ( A ^ k ) ) |
| 16 |
14 10 8 15
|
syl3anc |
|- ( ( ph /\ 1 < A ) -> E. k e. NN ( ( 2 x. B ) / ( A - 1 ) ) < ( A ^ k ) ) |
| 17 |
|
nnnn0 |
|- ( k e. NN -> k e. NN0 ) |
| 18 |
|
reexpcl |
|- ( ( A e. RR /\ k e. NN0 ) -> ( A ^ k ) e. RR ) |
| 19 |
10 17 18
|
syl2an |
|- ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> ( A ^ k ) e. RR ) |
| 20 |
14
|
adantr |
|- ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> ( ( 2 x. B ) / ( A - 1 ) ) e. RR ) |
| 21 |
13
|
rpred |
|- ( ( ph /\ 1 < A ) -> ( A - 1 ) e. RR ) |
| 22 |
21
|
adantr |
|- ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> ( A - 1 ) e. RR ) |
| 23 |
|
nnre |
|- ( k e. NN -> k e. RR ) |
| 24 |
23
|
adantl |
|- ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> k e. RR ) |
| 25 |
22 24
|
remulcld |
|- ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> ( ( A - 1 ) x. k ) e. RR ) |
| 26 |
25 19
|
remulcld |
|- ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> ( ( ( A - 1 ) x. k ) x. ( A ^ k ) ) e. RR ) |
| 27 |
1
|
ad2antrr |
|- ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> A e. RR ) |
| 28 |
|
2nn |
|- 2 e. NN |
| 29 |
|
simpr |
|- ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> k e. NN ) |
| 30 |
|
nnmulcl |
|- ( ( 2 e. NN /\ k e. NN ) -> ( 2 x. k ) e. NN ) |
| 31 |
28 29 30
|
sylancr |
|- ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> ( 2 x. k ) e. NN ) |
| 32 |
31
|
nnnn0d |
|- ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> ( 2 x. k ) e. NN0 ) |
| 33 |
27 32
|
reexpcld |
|- ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> ( A ^ ( 2 x. k ) ) e. RR ) |
| 34 |
31
|
nnred |
|- ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> ( 2 x. k ) e. RR ) |
| 35 |
2
|
ad2antrr |
|- ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> B e. RR ) |
| 36 |
34 35
|
remulcld |
|- ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> ( ( 2 x. k ) x. B ) e. RR ) |
| 37 |
|
0red |
|- ( ( ph /\ 1 < A ) -> 0 e. RR ) |
| 38 |
9
|
a1i |
|- ( ( ph /\ 1 < A ) -> 1 e. RR ) |
| 39 |
|
0lt1 |
|- 0 < 1 |
| 40 |
39
|
a1i |
|- ( ( ph /\ 1 < A ) -> 0 < 1 ) |
| 41 |
37 38 10 40 8
|
lttrd |
|- ( ( ph /\ 1 < A ) -> 0 < A ) |
| 42 |
10 41
|
elrpd |
|- ( ( ph /\ 1 < A ) -> A e. RR+ ) |
| 43 |
|
nnz |
|- ( k e. NN -> k e. ZZ ) |
| 44 |
|
rpexpcl |
|- ( ( A e. RR+ /\ k e. ZZ ) -> ( A ^ k ) e. RR+ ) |
| 45 |
42 43 44
|
syl2an |
|- ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> ( A ^ k ) e. RR+ ) |
| 46 |
|
peano2re |
|- ( ( ( A - 1 ) x. k ) e. RR -> ( ( ( A - 1 ) x. k ) + 1 ) e. RR ) |
| 47 |
25 46
|
syl |
|- ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> ( ( ( A - 1 ) x. k ) + 1 ) e. RR ) |
| 48 |
25
|
ltp1d |
|- ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> ( ( A - 1 ) x. k ) < ( ( ( A - 1 ) x. k ) + 1 ) ) |
| 49 |
17
|
adantl |
|- ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> k e. NN0 ) |
| 50 |
42
|
adantr |
|- ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> A e. RR+ ) |
| 51 |
50
|
rpge0d |
|- ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> 0 <_ A ) |
| 52 |
|
bernneq2 |
|- ( ( A e. RR /\ k e. NN0 /\ 0 <_ A ) -> ( ( ( A - 1 ) x. k ) + 1 ) <_ ( A ^ k ) ) |
| 53 |
27 49 51 52
|
syl3anc |
|- ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> ( ( ( A - 1 ) x. k ) + 1 ) <_ ( A ^ k ) ) |
| 54 |
25 47 19 48 53
|
ltletrd |
|- ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> ( ( A - 1 ) x. k ) < ( A ^ k ) ) |
| 55 |
25 19 45 54
|
ltmul1dd |
|- ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> ( ( ( A - 1 ) x. k ) x. ( A ^ k ) ) < ( ( A ^ k ) x. ( A ^ k ) ) ) |
| 56 |
24
|
recnd |
|- ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> k e. CC ) |
| 57 |
56
|
2timesd |
|- ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> ( 2 x. k ) = ( k + k ) ) |
| 58 |
57
|
oveq2d |
|- ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> ( A ^ ( 2 x. k ) ) = ( A ^ ( k + k ) ) ) |
| 59 |
27
|
recnd |
|- ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> A e. CC ) |
| 60 |
59 49 49
|
expaddd |
|- ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> ( A ^ ( k + k ) ) = ( ( A ^ k ) x. ( A ^ k ) ) ) |
| 61 |
58 60
|
eqtrd |
|- ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> ( A ^ ( 2 x. k ) ) = ( ( A ^ k ) x. ( A ^ k ) ) ) |
| 62 |
55 61
|
breqtrrd |
|- ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> ( ( ( A - 1 ) x. k ) x. ( A ^ k ) ) < ( A ^ ( 2 x. k ) ) ) |
| 63 |
|
oveq2 |
|- ( n = ( 2 x. k ) -> ( A ^ n ) = ( A ^ ( 2 x. k ) ) ) |
| 64 |
|
oveq1 |
|- ( n = ( 2 x. k ) -> ( n x. B ) = ( ( 2 x. k ) x. B ) ) |
| 65 |
63 64
|
breq12d |
|- ( n = ( 2 x. k ) -> ( ( A ^ n ) <_ ( n x. B ) <-> ( A ^ ( 2 x. k ) ) <_ ( ( 2 x. k ) x. B ) ) ) |
| 66 |
3
|
ralrimiva |
|- ( ph -> A. n e. NN ( A ^ n ) <_ ( n x. B ) ) |
| 67 |
66
|
ad2antrr |
|- ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> A. n e. NN ( A ^ n ) <_ ( n x. B ) ) |
| 68 |
65 67 31
|
rspcdva |
|- ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> ( A ^ ( 2 x. k ) ) <_ ( ( 2 x. k ) x. B ) ) |
| 69 |
26 33 36 62 68
|
ltletrd |
|- ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> ( ( ( A - 1 ) x. k ) x. ( A ^ k ) ) < ( ( 2 x. k ) x. B ) ) |
| 70 |
22
|
recnd |
|- ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> ( A - 1 ) e. CC ) |
| 71 |
19
|
recnd |
|- ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> ( A ^ k ) e. CC ) |
| 72 |
70 71 56
|
mul32d |
|- ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> ( ( ( A - 1 ) x. ( A ^ k ) ) x. k ) = ( ( ( A - 1 ) x. k ) x. ( A ^ k ) ) ) |
| 73 |
|
2cnd |
|- ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> 2 e. CC ) |
| 74 |
35
|
recnd |
|- ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> B e. CC ) |
| 75 |
73 74 56
|
mul32d |
|- ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> ( ( 2 x. B ) x. k ) = ( ( 2 x. k ) x. B ) ) |
| 76 |
69 72 75
|
3brtr4d |
|- ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> ( ( ( A - 1 ) x. ( A ^ k ) ) x. k ) < ( ( 2 x. B ) x. k ) ) |
| 77 |
22 19
|
remulcld |
|- ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> ( ( A - 1 ) x. ( A ^ k ) ) e. RR ) |
| 78 |
7
|
adantr |
|- ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> ( 2 x. B ) e. RR ) |
| 79 |
|
nngt0 |
|- ( k e. NN -> 0 < k ) |
| 80 |
79
|
adantl |
|- ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> 0 < k ) |
| 81 |
|
ltmul1 |
|- ( ( ( ( A - 1 ) x. ( A ^ k ) ) e. RR /\ ( 2 x. B ) e. RR /\ ( k e. RR /\ 0 < k ) ) -> ( ( ( A - 1 ) x. ( A ^ k ) ) < ( 2 x. B ) <-> ( ( ( A - 1 ) x. ( A ^ k ) ) x. k ) < ( ( 2 x. B ) x. k ) ) ) |
| 82 |
77 78 24 80 81
|
syl112anc |
|- ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> ( ( ( A - 1 ) x. ( A ^ k ) ) < ( 2 x. B ) <-> ( ( ( A - 1 ) x. ( A ^ k ) ) x. k ) < ( ( 2 x. B ) x. k ) ) ) |
| 83 |
76 82
|
mpbird |
|- ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> ( ( A - 1 ) x. ( A ^ k ) ) < ( 2 x. B ) ) |
| 84 |
13
|
rpgt0d |
|- ( ( ph /\ 1 < A ) -> 0 < ( A - 1 ) ) |
| 85 |
84
|
adantr |
|- ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> 0 < ( A - 1 ) ) |
| 86 |
|
ltmuldiv2 |
|- ( ( ( A ^ k ) e. RR /\ ( 2 x. B ) e. RR /\ ( ( A - 1 ) e. RR /\ 0 < ( A - 1 ) ) ) -> ( ( ( A - 1 ) x. ( A ^ k ) ) < ( 2 x. B ) <-> ( A ^ k ) < ( ( 2 x. B ) / ( A - 1 ) ) ) ) |
| 87 |
19 78 22 85 86
|
syl112anc |
|- ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> ( ( ( A - 1 ) x. ( A ^ k ) ) < ( 2 x. B ) <-> ( A ^ k ) < ( ( 2 x. B ) / ( A - 1 ) ) ) ) |
| 88 |
83 87
|
mpbid |
|- ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> ( A ^ k ) < ( ( 2 x. B ) / ( A - 1 ) ) ) |
| 89 |
19 20 88
|
ltnsymd |
|- ( ( ( ph /\ 1 < A ) /\ k e. NN ) -> -. ( ( 2 x. B ) / ( A - 1 ) ) < ( A ^ k ) ) |
| 90 |
89
|
nrexdv |
|- ( ( ph /\ 1 < A ) -> -. E. k e. NN ( ( 2 x. B ) / ( A - 1 ) ) < ( A ^ k ) ) |
| 91 |
16 90
|
pm2.65da |
|- ( ph -> -. 1 < A ) |
| 92 |
|
lenlt |
|- ( ( A e. RR /\ 1 e. RR ) -> ( A <_ 1 <-> -. 1 < A ) ) |
| 93 |
1 9 92
|
sylancl |
|- ( ph -> ( A <_ 1 <-> -. 1 < A ) ) |
| 94 |
91 93
|
mpbird |
|- ( ph -> A <_ 1 ) |