| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qrng.q |
|- Q = ( CCfld |`s QQ ) |
| 2 |
|
qabsabv.a |
|- A = ( AbsVal ` Q ) |
| 3 |
|
padic.j |
|- J = ( q e. Prime |-> ( x e. QQ |-> if ( x = 0 , 0 , ( q ^ -u ( q pCnt x ) ) ) ) ) |
| 4 |
|
ostth.k |
|- K = ( x e. QQ |-> if ( x = 0 , 0 , 1 ) ) |
| 5 |
|
ostth.1 |
|- ( ph -> F e. A ) |
| 6 |
|
ostth2.2 |
|- ( ph -> N e. ( ZZ>= ` 2 ) ) |
| 7 |
|
ostth2.3 |
|- ( ph -> 1 < ( F ` N ) ) |
| 8 |
|
ostth2.4 |
|- R = ( ( log ` ( F ` N ) ) / ( log ` N ) ) |
| 9 |
|
ostth2.5 |
|- ( ph -> M e. ( ZZ>= ` 2 ) ) |
| 10 |
|
ostth2.6 |
|- S = ( ( log ` ( F ` M ) ) / ( log ` M ) ) |
| 11 |
|
ostth2.7 |
|- T = if ( ( F ` M ) <_ 1 , 1 , ( F ` M ) ) |
| 12 |
|
ostth2.8 |
|- U = ( ( log ` N ) / ( log ` M ) ) |
| 13 |
|
eluz2b2 |
|- ( N e. ( ZZ>= ` 2 ) <-> ( N e. NN /\ 1 < N ) ) |
| 14 |
6 13
|
sylib |
|- ( ph -> ( N e. NN /\ 1 < N ) ) |
| 15 |
14
|
simpld |
|- ( ph -> N e. NN ) |
| 16 |
|
nnq |
|- ( N e. NN -> N e. QQ ) |
| 17 |
15 16
|
syl |
|- ( ph -> N e. QQ ) |
| 18 |
1
|
qrngbas |
|- QQ = ( Base ` Q ) |
| 19 |
2 18
|
abvcl |
|- ( ( F e. A /\ N e. QQ ) -> ( F ` N ) e. RR ) |
| 20 |
5 17 19
|
syl2anc |
|- ( ph -> ( F ` N ) e. RR ) |
| 21 |
20
|
adantr |
|- ( ( ph /\ X e. NN ) -> ( F ` N ) e. RR ) |
| 22 |
21
|
recnd |
|- ( ( ph /\ X e. NN ) -> ( F ` N ) e. CC ) |
| 23 |
|
1re |
|- 1 e. RR |
| 24 |
|
eluz2b2 |
|- ( M e. ( ZZ>= ` 2 ) <-> ( M e. NN /\ 1 < M ) ) |
| 25 |
9 24
|
sylib |
|- ( ph -> ( M e. NN /\ 1 < M ) ) |
| 26 |
25
|
simpld |
|- ( ph -> M e. NN ) |
| 27 |
|
nnq |
|- ( M e. NN -> M e. QQ ) |
| 28 |
26 27
|
syl |
|- ( ph -> M e. QQ ) |
| 29 |
2 18
|
abvcl |
|- ( ( F e. A /\ M e. QQ ) -> ( F ` M ) e. RR ) |
| 30 |
5 28 29
|
syl2anc |
|- ( ph -> ( F ` M ) e. RR ) |
| 31 |
|
ifcl |
|- ( ( 1 e. RR /\ ( F ` M ) e. RR ) -> if ( ( F ` M ) <_ 1 , 1 , ( F ` M ) ) e. RR ) |
| 32 |
23 30 31
|
sylancr |
|- ( ph -> if ( ( F ` M ) <_ 1 , 1 , ( F ` M ) ) e. RR ) |
| 33 |
11 32
|
eqeltrid |
|- ( ph -> T e. RR ) |
| 34 |
33
|
adantr |
|- ( ( ph /\ X e. NN ) -> T e. RR ) |
| 35 |
|
0red |
|- ( ph -> 0 e. RR ) |
| 36 |
|
1red |
|- ( ph -> 1 e. RR ) |
| 37 |
|
0lt1 |
|- 0 < 1 |
| 38 |
37
|
a1i |
|- ( ph -> 0 < 1 ) |
| 39 |
|
max2 |
|- ( ( ( F ` M ) e. RR /\ 1 e. RR ) -> 1 <_ if ( ( F ` M ) <_ 1 , 1 , ( F ` M ) ) ) |
| 40 |
30 36 39
|
syl2anc |
|- ( ph -> 1 <_ if ( ( F ` M ) <_ 1 , 1 , ( F ` M ) ) ) |
| 41 |
40 11
|
breqtrrdi |
|- ( ph -> 1 <_ T ) |
| 42 |
35 36 33 38 41
|
ltletrd |
|- ( ph -> 0 < T ) |
| 43 |
42
|
adantr |
|- ( ( ph /\ X e. NN ) -> 0 < T ) |
| 44 |
34 43
|
elrpd |
|- ( ( ph /\ X e. NN ) -> T e. RR+ ) |
| 45 |
44
|
rpge0d |
|- ( ( ph /\ X e. NN ) -> 0 <_ T ) |
| 46 |
15
|
nnred |
|- ( ph -> N e. RR ) |
| 47 |
14
|
simprd |
|- ( ph -> 1 < N ) |
| 48 |
46 47
|
rplogcld |
|- ( ph -> ( log ` N ) e. RR+ ) |
| 49 |
26
|
nnred |
|- ( ph -> M e. RR ) |
| 50 |
25
|
simprd |
|- ( ph -> 1 < M ) |
| 51 |
49 50
|
rplogcld |
|- ( ph -> ( log ` M ) e. RR+ ) |
| 52 |
48 51
|
rpdivcld |
|- ( ph -> ( ( log ` N ) / ( log ` M ) ) e. RR+ ) |
| 53 |
12 52
|
eqeltrid |
|- ( ph -> U e. RR+ ) |
| 54 |
53
|
rpred |
|- ( ph -> U e. RR ) |
| 55 |
54
|
adantr |
|- ( ( ph /\ X e. NN ) -> U e. RR ) |
| 56 |
34 45 55
|
recxpcld |
|- ( ( ph /\ X e. NN ) -> ( T ^c U ) e. RR ) |
| 57 |
56
|
recnd |
|- ( ( ph /\ X e. NN ) -> ( T ^c U ) e. CC ) |
| 58 |
44 55
|
rpcxpcld |
|- ( ( ph /\ X e. NN ) -> ( T ^c U ) e. RR+ ) |
| 59 |
58
|
rpne0d |
|- ( ( ph /\ X e. NN ) -> ( T ^c U ) =/= 0 ) |
| 60 |
|
nnnn0 |
|- ( X e. NN -> X e. NN0 ) |
| 61 |
60
|
adantl |
|- ( ( ph /\ X e. NN ) -> X e. NN0 ) |
| 62 |
22 57 59 61
|
expdivd |
|- ( ( ph /\ X e. NN ) -> ( ( ( F ` N ) / ( T ^c U ) ) ^ X ) = ( ( ( F ` N ) ^ X ) / ( ( T ^c U ) ^ X ) ) ) |
| 63 |
|
reexpcl |
|- ( ( ( F ` N ) e. RR /\ X e. NN0 ) -> ( ( F ` N ) ^ X ) e. RR ) |
| 64 |
20 60 63
|
syl2an |
|- ( ( ph /\ X e. NN ) -> ( ( F ` N ) ^ X ) e. RR ) |
| 65 |
26
|
adantr |
|- ( ( ph /\ X e. NN ) -> M e. NN ) |
| 66 |
65
|
nnred |
|- ( ( ph /\ X e. NN ) -> M e. RR ) |
| 67 |
|
nnre |
|- ( X e. NN -> X e. RR ) |
| 68 |
67
|
adantl |
|- ( ( ph /\ X e. NN ) -> X e. RR ) |
| 69 |
68 55
|
remulcld |
|- ( ( ph /\ X e. NN ) -> ( X x. U ) e. RR ) |
| 70 |
61
|
nn0ge0d |
|- ( ( ph /\ X e. NN ) -> 0 <_ X ) |
| 71 |
53
|
rpge0d |
|- ( ph -> 0 <_ U ) |
| 72 |
71
|
adantr |
|- ( ( ph /\ X e. NN ) -> 0 <_ U ) |
| 73 |
68 55 70 72
|
mulge0d |
|- ( ( ph /\ X e. NN ) -> 0 <_ ( X x. U ) ) |
| 74 |
|
flge0nn0 |
|- ( ( ( X x. U ) e. RR /\ 0 <_ ( X x. U ) ) -> ( |_ ` ( X x. U ) ) e. NN0 ) |
| 75 |
69 73 74
|
syl2anc |
|- ( ( ph /\ X e. NN ) -> ( |_ ` ( X x. U ) ) e. NN0 ) |
| 76 |
|
peano2nn0 |
|- ( ( |_ ` ( X x. U ) ) e. NN0 -> ( ( |_ ` ( X x. U ) ) + 1 ) e. NN0 ) |
| 77 |
75 76
|
syl |
|- ( ( ph /\ X e. NN ) -> ( ( |_ ` ( X x. U ) ) + 1 ) e. NN0 ) |
| 78 |
77
|
nn0red |
|- ( ( ph /\ X e. NN ) -> ( ( |_ ` ( X x. U ) ) + 1 ) e. RR ) |
| 79 |
66 78
|
remulcld |
|- ( ( ph /\ X e. NN ) -> ( M x. ( ( |_ ` ( X x. U ) ) + 1 ) ) e. RR ) |
| 80 |
34 77
|
reexpcld |
|- ( ( ph /\ X e. NN ) -> ( T ^ ( ( |_ ` ( X x. U ) ) + 1 ) ) e. RR ) |
| 81 |
79 80
|
remulcld |
|- ( ( ph /\ X e. NN ) -> ( ( M x. ( ( |_ ` ( X x. U ) ) + 1 ) ) x. ( T ^ ( ( |_ ` ( X x. U ) ) + 1 ) ) ) e. RR ) |
| 82 |
|
peano2re |
|- ( U e. RR -> ( U + 1 ) e. RR ) |
| 83 |
55 82
|
syl |
|- ( ( ph /\ X e. NN ) -> ( U + 1 ) e. RR ) |
| 84 |
68 83
|
remulcld |
|- ( ( ph /\ X e. NN ) -> ( X x. ( U + 1 ) ) e. RR ) |
| 85 |
66 84
|
remulcld |
|- ( ( ph /\ X e. NN ) -> ( M x. ( X x. ( U + 1 ) ) ) e. RR ) |
| 86 |
56 61
|
reexpcld |
|- ( ( ph /\ X e. NN ) -> ( ( T ^c U ) ^ X ) e. RR ) |
| 87 |
86 34
|
remulcld |
|- ( ( ph /\ X e. NN ) -> ( ( ( T ^c U ) ^ X ) x. T ) e. RR ) |
| 88 |
85 87
|
remulcld |
|- ( ( ph /\ X e. NN ) -> ( ( M x. ( X x. ( U + 1 ) ) ) x. ( ( ( T ^c U ) ^ X ) x. T ) ) e. RR ) |
| 89 |
1 2
|
qabvexp |
|- ( ( F e. A /\ N e. QQ /\ X e. NN0 ) -> ( F ` ( N ^ X ) ) = ( ( F ` N ) ^ X ) ) |
| 90 |
5 17 60 89
|
syl2an3an |
|- ( ( ph /\ X e. NN ) -> ( F ` ( N ^ X ) ) = ( ( F ` N ) ^ X ) ) |
| 91 |
68
|
recnd |
|- ( ( ph /\ X e. NN ) -> X e. CC ) |
| 92 |
48
|
rpred |
|- ( ph -> ( log ` N ) e. RR ) |
| 93 |
92
|
recnd |
|- ( ph -> ( log ` N ) e. CC ) |
| 94 |
93
|
adantr |
|- ( ( ph /\ X e. NN ) -> ( log ` N ) e. CC ) |
| 95 |
51
|
rpred |
|- ( ph -> ( log ` M ) e. RR ) |
| 96 |
95
|
recnd |
|- ( ph -> ( log ` M ) e. CC ) |
| 97 |
96
|
adantr |
|- ( ( ph /\ X e. NN ) -> ( log ` M ) e. CC ) |
| 98 |
51
|
adantr |
|- ( ( ph /\ X e. NN ) -> ( log ` M ) e. RR+ ) |
| 99 |
98
|
rpne0d |
|- ( ( ph /\ X e. NN ) -> ( log ` M ) =/= 0 ) |
| 100 |
91 94 97 99
|
divassd |
|- ( ( ph /\ X e. NN ) -> ( ( X x. ( log ` N ) ) / ( log ` M ) ) = ( X x. ( ( log ` N ) / ( log ` M ) ) ) ) |
| 101 |
12
|
oveq2i |
|- ( X x. U ) = ( X x. ( ( log ` N ) / ( log ` M ) ) ) |
| 102 |
100 101
|
eqtr4di |
|- ( ( ph /\ X e. NN ) -> ( ( X x. ( log ` N ) ) / ( log ` M ) ) = ( X x. U ) ) |
| 103 |
102
|
oveq1d |
|- ( ( ph /\ X e. NN ) -> ( ( ( X x. ( log ` N ) ) / ( log ` M ) ) x. ( log ` M ) ) = ( ( X x. U ) x. ( log ` M ) ) ) |
| 104 |
91 94
|
mulcld |
|- ( ( ph /\ X e. NN ) -> ( X x. ( log ` N ) ) e. CC ) |
| 105 |
104 97 99
|
divcan1d |
|- ( ( ph /\ X e. NN ) -> ( ( ( X x. ( log ` N ) ) / ( log ` M ) ) x. ( log ` M ) ) = ( X x. ( log ` N ) ) ) |
| 106 |
103 105
|
eqtr3d |
|- ( ( ph /\ X e. NN ) -> ( ( X x. U ) x. ( log ` M ) ) = ( X x. ( log ` N ) ) ) |
| 107 |
|
flltp1 |
|- ( ( X x. U ) e. RR -> ( X x. U ) < ( ( |_ ` ( X x. U ) ) + 1 ) ) |
| 108 |
69 107
|
syl |
|- ( ( ph /\ X e. NN ) -> ( X x. U ) < ( ( |_ ` ( X x. U ) ) + 1 ) ) |
| 109 |
69 78 98 108
|
ltmul1dd |
|- ( ( ph /\ X e. NN ) -> ( ( X x. U ) x. ( log ` M ) ) < ( ( ( |_ ` ( X x. U ) ) + 1 ) x. ( log ` M ) ) ) |
| 110 |
106 109
|
eqbrtrrd |
|- ( ( ph /\ X e. NN ) -> ( X x. ( log ` N ) ) < ( ( ( |_ ` ( X x. U ) ) + 1 ) x. ( log ` M ) ) ) |
| 111 |
92
|
adantr |
|- ( ( ph /\ X e. NN ) -> ( log ` N ) e. RR ) |
| 112 |
68 111
|
remulcld |
|- ( ( ph /\ X e. NN ) -> ( X x. ( log ` N ) ) e. RR ) |
| 113 |
95
|
adantr |
|- ( ( ph /\ X e. NN ) -> ( log ` M ) e. RR ) |
| 114 |
78 113
|
remulcld |
|- ( ( ph /\ X e. NN ) -> ( ( ( |_ ` ( X x. U ) ) + 1 ) x. ( log ` M ) ) e. RR ) |
| 115 |
|
eflt |
|- ( ( ( X x. ( log ` N ) ) e. RR /\ ( ( ( |_ ` ( X x. U ) ) + 1 ) x. ( log ` M ) ) e. RR ) -> ( ( X x. ( log ` N ) ) < ( ( ( |_ ` ( X x. U ) ) + 1 ) x. ( log ` M ) ) <-> ( exp ` ( X x. ( log ` N ) ) ) < ( exp ` ( ( ( |_ ` ( X x. U ) ) + 1 ) x. ( log ` M ) ) ) ) ) |
| 116 |
112 114 115
|
syl2anc |
|- ( ( ph /\ X e. NN ) -> ( ( X x. ( log ` N ) ) < ( ( ( |_ ` ( X x. U ) ) + 1 ) x. ( log ` M ) ) <-> ( exp ` ( X x. ( log ` N ) ) ) < ( exp ` ( ( ( |_ ` ( X x. U ) ) + 1 ) x. ( log ` M ) ) ) ) ) |
| 117 |
110 116
|
mpbid |
|- ( ( ph /\ X e. NN ) -> ( exp ` ( X x. ( log ` N ) ) ) < ( exp ` ( ( ( |_ ` ( X x. U ) ) + 1 ) x. ( log ` M ) ) ) ) |
| 118 |
15
|
nnrpd |
|- ( ph -> N e. RR+ ) |
| 119 |
|
nnz |
|- ( X e. NN -> X e. ZZ ) |
| 120 |
|
reexplog |
|- ( ( N e. RR+ /\ X e. ZZ ) -> ( N ^ X ) = ( exp ` ( X x. ( log ` N ) ) ) ) |
| 121 |
118 119 120
|
syl2an |
|- ( ( ph /\ X e. NN ) -> ( N ^ X ) = ( exp ` ( X x. ( log ` N ) ) ) ) |
| 122 |
65
|
nnrpd |
|- ( ( ph /\ X e. NN ) -> M e. RR+ ) |
| 123 |
77
|
nn0zd |
|- ( ( ph /\ X e. NN ) -> ( ( |_ ` ( X x. U ) ) + 1 ) e. ZZ ) |
| 124 |
|
reexplog |
|- ( ( M e. RR+ /\ ( ( |_ ` ( X x. U ) ) + 1 ) e. ZZ ) -> ( M ^ ( ( |_ ` ( X x. U ) ) + 1 ) ) = ( exp ` ( ( ( |_ ` ( X x. U ) ) + 1 ) x. ( log ` M ) ) ) ) |
| 125 |
122 123 124
|
syl2anc |
|- ( ( ph /\ X e. NN ) -> ( M ^ ( ( |_ ` ( X x. U ) ) + 1 ) ) = ( exp ` ( ( ( |_ ` ( X x. U ) ) + 1 ) x. ( log ` M ) ) ) ) |
| 126 |
117 121 125
|
3brtr4d |
|- ( ( ph /\ X e. NN ) -> ( N ^ X ) < ( M ^ ( ( |_ ` ( X x. U ) ) + 1 ) ) ) |
| 127 |
|
nnexpcl |
|- ( ( N e. NN /\ X e. NN0 ) -> ( N ^ X ) e. NN ) |
| 128 |
15 60 127
|
syl2an |
|- ( ( ph /\ X e. NN ) -> ( N ^ X ) e. NN ) |
| 129 |
65 77
|
nnexpcld |
|- ( ( ph /\ X e. NN ) -> ( M ^ ( ( |_ ` ( X x. U ) ) + 1 ) ) e. NN ) |
| 130 |
|
nnltlem1 |
|- ( ( ( N ^ X ) e. NN /\ ( M ^ ( ( |_ ` ( X x. U ) ) + 1 ) ) e. NN ) -> ( ( N ^ X ) < ( M ^ ( ( |_ ` ( X x. U ) ) + 1 ) ) <-> ( N ^ X ) <_ ( ( M ^ ( ( |_ ` ( X x. U ) ) + 1 ) ) - 1 ) ) ) |
| 131 |
128 129 130
|
syl2anc |
|- ( ( ph /\ X e. NN ) -> ( ( N ^ X ) < ( M ^ ( ( |_ ` ( X x. U ) ) + 1 ) ) <-> ( N ^ X ) <_ ( ( M ^ ( ( |_ ` ( X x. U ) ) + 1 ) ) - 1 ) ) ) |
| 132 |
126 131
|
mpbid |
|- ( ( ph /\ X e. NN ) -> ( N ^ X ) <_ ( ( M ^ ( ( |_ ` ( X x. U ) ) + 1 ) ) - 1 ) ) |
| 133 |
128
|
nnnn0d |
|- ( ( ph /\ X e. NN ) -> ( N ^ X ) e. NN0 ) |
| 134 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 135 |
133 134
|
eleqtrdi |
|- ( ( ph /\ X e. NN ) -> ( N ^ X ) e. ( ZZ>= ` 0 ) ) |
| 136 |
129
|
nnzd |
|- ( ( ph /\ X e. NN ) -> ( M ^ ( ( |_ ` ( X x. U ) ) + 1 ) ) e. ZZ ) |
| 137 |
|
peano2zm |
|- ( ( M ^ ( ( |_ ` ( X x. U ) ) + 1 ) ) e. ZZ -> ( ( M ^ ( ( |_ ` ( X x. U ) ) + 1 ) ) - 1 ) e. ZZ ) |
| 138 |
136 137
|
syl |
|- ( ( ph /\ X e. NN ) -> ( ( M ^ ( ( |_ ` ( X x. U ) ) + 1 ) ) - 1 ) e. ZZ ) |
| 139 |
|
elfz5 |
|- ( ( ( N ^ X ) e. ( ZZ>= ` 0 ) /\ ( ( M ^ ( ( |_ ` ( X x. U ) ) + 1 ) ) - 1 ) e. ZZ ) -> ( ( N ^ X ) e. ( 0 ... ( ( M ^ ( ( |_ ` ( X x. U ) ) + 1 ) ) - 1 ) ) <-> ( N ^ X ) <_ ( ( M ^ ( ( |_ ` ( X x. U ) ) + 1 ) ) - 1 ) ) ) |
| 140 |
135 138 139
|
syl2anc |
|- ( ( ph /\ X e. NN ) -> ( ( N ^ X ) e. ( 0 ... ( ( M ^ ( ( |_ ` ( X x. U ) ) + 1 ) ) - 1 ) ) <-> ( N ^ X ) <_ ( ( M ^ ( ( |_ ` ( X x. U ) ) + 1 ) ) - 1 ) ) ) |
| 141 |
132 140
|
mpbird |
|- ( ( ph /\ X e. NN ) -> ( N ^ X ) e. ( 0 ... ( ( M ^ ( ( |_ ` ( X x. U ) ) + 1 ) ) - 1 ) ) ) |
| 142 |
1 2 3 4 5 6 7 8 9 10 11
|
ostth2lem2 |
|- ( ( ph /\ ( ( |_ ` ( X x. U ) ) + 1 ) e. NN0 /\ ( N ^ X ) e. ( 0 ... ( ( M ^ ( ( |_ ` ( X x. U ) ) + 1 ) ) - 1 ) ) ) -> ( F ` ( N ^ X ) ) <_ ( ( M x. ( ( |_ ` ( X x. U ) ) + 1 ) ) x. ( T ^ ( ( |_ ` ( X x. U ) ) + 1 ) ) ) ) |
| 143 |
142
|
3expia |
|- ( ( ph /\ ( ( |_ ` ( X x. U ) ) + 1 ) e. NN0 ) -> ( ( N ^ X ) e. ( 0 ... ( ( M ^ ( ( |_ ` ( X x. U ) ) + 1 ) ) - 1 ) ) -> ( F ` ( N ^ X ) ) <_ ( ( M x. ( ( |_ ` ( X x. U ) ) + 1 ) ) x. ( T ^ ( ( |_ ` ( X x. U ) ) + 1 ) ) ) ) ) |
| 144 |
77 143
|
syldan |
|- ( ( ph /\ X e. NN ) -> ( ( N ^ X ) e. ( 0 ... ( ( M ^ ( ( |_ ` ( X x. U ) ) + 1 ) ) - 1 ) ) -> ( F ` ( N ^ X ) ) <_ ( ( M x. ( ( |_ ` ( X x. U ) ) + 1 ) ) x. ( T ^ ( ( |_ ` ( X x. U ) ) + 1 ) ) ) ) ) |
| 145 |
141 144
|
mpd |
|- ( ( ph /\ X e. NN ) -> ( F ` ( N ^ X ) ) <_ ( ( M x. ( ( |_ ` ( X x. U ) ) + 1 ) ) x. ( T ^ ( ( |_ ` ( X x. U ) ) + 1 ) ) ) ) |
| 146 |
90 145
|
eqbrtrrd |
|- ( ( ph /\ X e. NN ) -> ( ( F ` N ) ^ X ) <_ ( ( M x. ( ( |_ ` ( X x. U ) ) + 1 ) ) x. ( T ^ ( ( |_ ` ( X x. U ) ) + 1 ) ) ) ) |
| 147 |
85 80
|
remulcld |
|- ( ( ph /\ X e. NN ) -> ( ( M x. ( X x. ( U + 1 ) ) ) x. ( T ^ ( ( |_ ` ( X x. U ) ) + 1 ) ) ) e. RR ) |
| 148 |
|
peano2re |
|- ( ( X x. U ) e. RR -> ( ( X x. U ) + 1 ) e. RR ) |
| 149 |
69 148
|
syl |
|- ( ( ph /\ X e. NN ) -> ( ( X x. U ) + 1 ) e. RR ) |
| 150 |
75
|
nn0red |
|- ( ( ph /\ X e. NN ) -> ( |_ ` ( X x. U ) ) e. RR ) |
| 151 |
|
1red |
|- ( ( ph /\ X e. NN ) -> 1 e. RR ) |
| 152 |
|
flle |
|- ( ( X x. U ) e. RR -> ( |_ ` ( X x. U ) ) <_ ( X x. U ) ) |
| 153 |
69 152
|
syl |
|- ( ( ph /\ X e. NN ) -> ( |_ ` ( X x. U ) ) <_ ( X x. U ) ) |
| 154 |
150 69 151 153
|
leadd1dd |
|- ( ( ph /\ X e. NN ) -> ( ( |_ ` ( X x. U ) ) + 1 ) <_ ( ( X x. U ) + 1 ) ) |
| 155 |
|
nnge1 |
|- ( X e. NN -> 1 <_ X ) |
| 156 |
155
|
adantl |
|- ( ( ph /\ X e. NN ) -> 1 <_ X ) |
| 157 |
151 68 69 156
|
leadd2dd |
|- ( ( ph /\ X e. NN ) -> ( ( X x. U ) + 1 ) <_ ( ( X x. U ) + X ) ) |
| 158 |
55
|
recnd |
|- ( ( ph /\ X e. NN ) -> U e. CC ) |
| 159 |
151
|
recnd |
|- ( ( ph /\ X e. NN ) -> 1 e. CC ) |
| 160 |
91 158 159
|
adddid |
|- ( ( ph /\ X e. NN ) -> ( X x. ( U + 1 ) ) = ( ( X x. U ) + ( X x. 1 ) ) ) |
| 161 |
91
|
mulridd |
|- ( ( ph /\ X e. NN ) -> ( X x. 1 ) = X ) |
| 162 |
161
|
oveq2d |
|- ( ( ph /\ X e. NN ) -> ( ( X x. U ) + ( X x. 1 ) ) = ( ( X x. U ) + X ) ) |
| 163 |
160 162
|
eqtrd |
|- ( ( ph /\ X e. NN ) -> ( X x. ( U + 1 ) ) = ( ( X x. U ) + X ) ) |
| 164 |
157 163
|
breqtrrd |
|- ( ( ph /\ X e. NN ) -> ( ( X x. U ) + 1 ) <_ ( X x. ( U + 1 ) ) ) |
| 165 |
78 149 84 154 164
|
letrd |
|- ( ( ph /\ X e. NN ) -> ( ( |_ ` ( X x. U ) ) + 1 ) <_ ( X x. ( U + 1 ) ) ) |
| 166 |
65
|
nngt0d |
|- ( ( ph /\ X e. NN ) -> 0 < M ) |
| 167 |
|
lemul2 |
|- ( ( ( ( |_ ` ( X x. U ) ) + 1 ) e. RR /\ ( X x. ( U + 1 ) ) e. RR /\ ( M e. RR /\ 0 < M ) ) -> ( ( ( |_ ` ( X x. U ) ) + 1 ) <_ ( X x. ( U + 1 ) ) <-> ( M x. ( ( |_ ` ( X x. U ) ) + 1 ) ) <_ ( M x. ( X x. ( U + 1 ) ) ) ) ) |
| 168 |
78 84 66 166 167
|
syl112anc |
|- ( ( ph /\ X e. NN ) -> ( ( ( |_ ` ( X x. U ) ) + 1 ) <_ ( X x. ( U + 1 ) ) <-> ( M x. ( ( |_ ` ( X x. U ) ) + 1 ) ) <_ ( M x. ( X x. ( U + 1 ) ) ) ) ) |
| 169 |
165 168
|
mpbid |
|- ( ( ph /\ X e. NN ) -> ( M x. ( ( |_ ` ( X x. U ) ) + 1 ) ) <_ ( M x. ( X x. ( U + 1 ) ) ) ) |
| 170 |
|
expgt0 |
|- ( ( T e. RR /\ ( ( |_ ` ( X x. U ) ) + 1 ) e. ZZ /\ 0 < T ) -> 0 < ( T ^ ( ( |_ ` ( X x. U ) ) + 1 ) ) ) |
| 171 |
34 123 43 170
|
syl3anc |
|- ( ( ph /\ X e. NN ) -> 0 < ( T ^ ( ( |_ ` ( X x. U ) ) + 1 ) ) ) |
| 172 |
|
lemul1 |
|- ( ( ( M x. ( ( |_ ` ( X x. U ) ) + 1 ) ) e. RR /\ ( M x. ( X x. ( U + 1 ) ) ) e. RR /\ ( ( T ^ ( ( |_ ` ( X x. U ) ) + 1 ) ) e. RR /\ 0 < ( T ^ ( ( |_ ` ( X x. U ) ) + 1 ) ) ) ) -> ( ( M x. ( ( |_ ` ( X x. U ) ) + 1 ) ) <_ ( M x. ( X x. ( U + 1 ) ) ) <-> ( ( M x. ( ( |_ ` ( X x. U ) ) + 1 ) ) x. ( T ^ ( ( |_ ` ( X x. U ) ) + 1 ) ) ) <_ ( ( M x. ( X x. ( U + 1 ) ) ) x. ( T ^ ( ( |_ ` ( X x. U ) ) + 1 ) ) ) ) ) |
| 173 |
79 85 80 171 172
|
syl112anc |
|- ( ( ph /\ X e. NN ) -> ( ( M x. ( ( |_ ` ( X x. U ) ) + 1 ) ) <_ ( M x. ( X x. ( U + 1 ) ) ) <-> ( ( M x. ( ( |_ ` ( X x. U ) ) + 1 ) ) x. ( T ^ ( ( |_ ` ( X x. U ) ) + 1 ) ) ) <_ ( ( M x. ( X x. ( U + 1 ) ) ) x. ( T ^ ( ( |_ ` ( X x. U ) ) + 1 ) ) ) ) ) |
| 174 |
169 173
|
mpbid |
|- ( ( ph /\ X e. NN ) -> ( ( M x. ( ( |_ ` ( X x. U ) ) + 1 ) ) x. ( T ^ ( ( |_ ` ( X x. U ) ) + 1 ) ) ) <_ ( ( M x. ( X x. ( U + 1 ) ) ) x. ( T ^ ( ( |_ ` ( X x. U ) ) + 1 ) ) ) ) |
| 175 |
34
|
recnd |
|- ( ( ph /\ X e. NN ) -> T e. CC ) |
| 176 |
175 75
|
expp1d |
|- ( ( ph /\ X e. NN ) -> ( T ^ ( ( |_ ` ( X x. U ) ) + 1 ) ) = ( ( T ^ ( |_ ` ( X x. U ) ) ) x. T ) ) |
| 177 |
41
|
adantr |
|- ( ( ph /\ X e. NN ) -> 1 <_ T ) |
| 178 |
|
remulcl |
|- ( ( U e. RR /\ X e. RR ) -> ( U x. X ) e. RR ) |
| 179 |
54 67 178
|
syl2an |
|- ( ( ph /\ X e. NN ) -> ( U x. X ) e. RR ) |
| 180 |
91 158
|
mulcomd |
|- ( ( ph /\ X e. NN ) -> ( X x. U ) = ( U x. X ) ) |
| 181 |
153 180
|
breqtrd |
|- ( ( ph /\ X e. NN ) -> ( |_ ` ( X x. U ) ) <_ ( U x. X ) ) |
| 182 |
34 177 150 179 181
|
cxplead |
|- ( ( ph /\ X e. NN ) -> ( T ^c ( |_ ` ( X x. U ) ) ) <_ ( T ^c ( U x. X ) ) ) |
| 183 |
|
cxpexp |
|- ( ( T e. CC /\ ( |_ ` ( X x. U ) ) e. NN0 ) -> ( T ^c ( |_ ` ( X x. U ) ) ) = ( T ^ ( |_ ` ( X x. U ) ) ) ) |
| 184 |
175 75 183
|
syl2anc |
|- ( ( ph /\ X e. NN ) -> ( T ^c ( |_ ` ( X x. U ) ) ) = ( T ^ ( |_ ` ( X x. U ) ) ) ) |
| 185 |
44 55 91
|
cxpmuld |
|- ( ( ph /\ X e. NN ) -> ( T ^c ( U x. X ) ) = ( ( T ^c U ) ^c X ) ) |
| 186 |
|
cxpexp |
|- ( ( ( T ^c U ) e. CC /\ X e. NN0 ) -> ( ( T ^c U ) ^c X ) = ( ( T ^c U ) ^ X ) ) |
| 187 |
57 61 186
|
syl2anc |
|- ( ( ph /\ X e. NN ) -> ( ( T ^c U ) ^c X ) = ( ( T ^c U ) ^ X ) ) |
| 188 |
185 187
|
eqtrd |
|- ( ( ph /\ X e. NN ) -> ( T ^c ( U x. X ) ) = ( ( T ^c U ) ^ X ) ) |
| 189 |
182 184 188
|
3brtr3d |
|- ( ( ph /\ X e. NN ) -> ( T ^ ( |_ ` ( X x. U ) ) ) <_ ( ( T ^c U ) ^ X ) ) |
| 190 |
34 75
|
reexpcld |
|- ( ( ph /\ X e. NN ) -> ( T ^ ( |_ ` ( X x. U ) ) ) e. RR ) |
| 191 |
190 86 44
|
lemul1d |
|- ( ( ph /\ X e. NN ) -> ( ( T ^ ( |_ ` ( X x. U ) ) ) <_ ( ( T ^c U ) ^ X ) <-> ( ( T ^ ( |_ ` ( X x. U ) ) ) x. T ) <_ ( ( ( T ^c U ) ^ X ) x. T ) ) ) |
| 192 |
189 191
|
mpbid |
|- ( ( ph /\ X e. NN ) -> ( ( T ^ ( |_ ` ( X x. U ) ) ) x. T ) <_ ( ( ( T ^c U ) ^ X ) x. T ) ) |
| 193 |
176 192
|
eqbrtrd |
|- ( ( ph /\ X e. NN ) -> ( T ^ ( ( |_ ` ( X x. U ) ) + 1 ) ) <_ ( ( ( T ^c U ) ^ X ) x. T ) ) |
| 194 |
|
nngt0 |
|- ( X e. NN -> 0 < X ) |
| 195 |
194
|
adantl |
|- ( ( ph /\ X e. NN ) -> 0 < X ) |
| 196 |
|
0red |
|- ( ( ph /\ X e. NN ) -> 0 e. RR ) |
| 197 |
53
|
adantr |
|- ( ( ph /\ X e. NN ) -> U e. RR+ ) |
| 198 |
197
|
rpgt0d |
|- ( ( ph /\ X e. NN ) -> 0 < U ) |
| 199 |
55
|
ltp1d |
|- ( ( ph /\ X e. NN ) -> U < ( U + 1 ) ) |
| 200 |
196 55 83 198 199
|
lttrd |
|- ( ( ph /\ X e. NN ) -> 0 < ( U + 1 ) ) |
| 201 |
68 83 195 200
|
mulgt0d |
|- ( ( ph /\ X e. NN ) -> 0 < ( X x. ( U + 1 ) ) ) |
| 202 |
66 84 166 201
|
mulgt0d |
|- ( ( ph /\ X e. NN ) -> 0 < ( M x. ( X x. ( U + 1 ) ) ) ) |
| 203 |
|
lemul2 |
|- ( ( ( T ^ ( ( |_ ` ( X x. U ) ) + 1 ) ) e. RR /\ ( ( ( T ^c U ) ^ X ) x. T ) e. RR /\ ( ( M x. ( X x. ( U + 1 ) ) ) e. RR /\ 0 < ( M x. ( X x. ( U + 1 ) ) ) ) ) -> ( ( T ^ ( ( |_ ` ( X x. U ) ) + 1 ) ) <_ ( ( ( T ^c U ) ^ X ) x. T ) <-> ( ( M x. ( X x. ( U + 1 ) ) ) x. ( T ^ ( ( |_ ` ( X x. U ) ) + 1 ) ) ) <_ ( ( M x. ( X x. ( U + 1 ) ) ) x. ( ( ( T ^c U ) ^ X ) x. T ) ) ) ) |
| 204 |
80 87 85 202 203
|
syl112anc |
|- ( ( ph /\ X e. NN ) -> ( ( T ^ ( ( |_ ` ( X x. U ) ) + 1 ) ) <_ ( ( ( T ^c U ) ^ X ) x. T ) <-> ( ( M x. ( X x. ( U + 1 ) ) ) x. ( T ^ ( ( |_ ` ( X x. U ) ) + 1 ) ) ) <_ ( ( M x. ( X x. ( U + 1 ) ) ) x. ( ( ( T ^c U ) ^ X ) x. T ) ) ) ) |
| 205 |
193 204
|
mpbid |
|- ( ( ph /\ X e. NN ) -> ( ( M x. ( X x. ( U + 1 ) ) ) x. ( T ^ ( ( |_ ` ( X x. U ) ) + 1 ) ) ) <_ ( ( M x. ( X x. ( U + 1 ) ) ) x. ( ( ( T ^c U ) ^ X ) x. T ) ) ) |
| 206 |
81 147 88 174 205
|
letrd |
|- ( ( ph /\ X e. NN ) -> ( ( M x. ( ( |_ ` ( X x. U ) ) + 1 ) ) x. ( T ^ ( ( |_ ` ( X x. U ) ) + 1 ) ) ) <_ ( ( M x. ( X x. ( U + 1 ) ) ) x. ( ( ( T ^c U ) ^ X ) x. T ) ) ) |
| 207 |
64 81 88 146 206
|
letrd |
|- ( ( ph /\ X e. NN ) -> ( ( F ` N ) ^ X ) <_ ( ( M x. ( X x. ( U + 1 ) ) ) x. ( ( ( T ^c U ) ^ X ) x. T ) ) ) |
| 208 |
85
|
recnd |
|- ( ( ph /\ X e. NN ) -> ( M x. ( X x. ( U + 1 ) ) ) e. CC ) |
| 209 |
86
|
recnd |
|- ( ( ph /\ X e. NN ) -> ( ( T ^c U ) ^ X ) e. CC ) |
| 210 |
208 209 175
|
mul12d |
|- ( ( ph /\ X e. NN ) -> ( ( M x. ( X x. ( U + 1 ) ) ) x. ( ( ( T ^c U ) ^ X ) x. T ) ) = ( ( ( T ^c U ) ^ X ) x. ( ( M x. ( X x. ( U + 1 ) ) ) x. T ) ) ) |
| 211 |
66
|
recnd |
|- ( ( ph /\ X e. NN ) -> M e. CC ) |
| 212 |
84
|
recnd |
|- ( ( ph /\ X e. NN ) -> ( X x. ( U + 1 ) ) e. CC ) |
| 213 |
211 212 175
|
mul32d |
|- ( ( ph /\ X e. NN ) -> ( ( M x. ( X x. ( U + 1 ) ) ) x. T ) = ( ( M x. T ) x. ( X x. ( U + 1 ) ) ) ) |
| 214 |
211 175
|
mulcld |
|- ( ( ph /\ X e. NN ) -> ( M x. T ) e. CC ) |
| 215 |
83
|
recnd |
|- ( ( ph /\ X e. NN ) -> ( U + 1 ) e. CC ) |
| 216 |
214 91 215
|
mul12d |
|- ( ( ph /\ X e. NN ) -> ( ( M x. T ) x. ( X x. ( U + 1 ) ) ) = ( X x. ( ( M x. T ) x. ( U + 1 ) ) ) ) |
| 217 |
213 216
|
eqtrd |
|- ( ( ph /\ X e. NN ) -> ( ( M x. ( X x. ( U + 1 ) ) ) x. T ) = ( X x. ( ( M x. T ) x. ( U + 1 ) ) ) ) |
| 218 |
217
|
oveq2d |
|- ( ( ph /\ X e. NN ) -> ( ( ( T ^c U ) ^ X ) x. ( ( M x. ( X x. ( U + 1 ) ) ) x. T ) ) = ( ( ( T ^c U ) ^ X ) x. ( X x. ( ( M x. T ) x. ( U + 1 ) ) ) ) ) |
| 219 |
210 218
|
eqtrd |
|- ( ( ph /\ X e. NN ) -> ( ( M x. ( X x. ( U + 1 ) ) ) x. ( ( ( T ^c U ) ^ X ) x. T ) ) = ( ( ( T ^c U ) ^ X ) x. ( X x. ( ( M x. T ) x. ( U + 1 ) ) ) ) ) |
| 220 |
207 219
|
breqtrd |
|- ( ( ph /\ X e. NN ) -> ( ( F ` N ) ^ X ) <_ ( ( ( T ^c U ) ^ X ) x. ( X x. ( ( M x. T ) x. ( U + 1 ) ) ) ) ) |
| 221 |
66 34
|
remulcld |
|- ( ( ph /\ X e. NN ) -> ( M x. T ) e. RR ) |
| 222 |
221 83
|
remulcld |
|- ( ( ph /\ X e. NN ) -> ( ( M x. T ) x. ( U + 1 ) ) e. RR ) |
| 223 |
68 222
|
remulcld |
|- ( ( ph /\ X e. NN ) -> ( X x. ( ( M x. T ) x. ( U + 1 ) ) ) e. RR ) |
| 224 |
119
|
adantl |
|- ( ( ph /\ X e. NN ) -> X e. ZZ ) |
| 225 |
58 224
|
rpexpcld |
|- ( ( ph /\ X e. NN ) -> ( ( T ^c U ) ^ X ) e. RR+ ) |
| 226 |
64 223 225
|
ledivmuld |
|- ( ( ph /\ X e. NN ) -> ( ( ( ( F ` N ) ^ X ) / ( ( T ^c U ) ^ X ) ) <_ ( X x. ( ( M x. T ) x. ( U + 1 ) ) ) <-> ( ( F ` N ) ^ X ) <_ ( ( ( T ^c U ) ^ X ) x. ( X x. ( ( M x. T ) x. ( U + 1 ) ) ) ) ) ) |
| 227 |
220 226
|
mpbird |
|- ( ( ph /\ X e. NN ) -> ( ( ( F ` N ) ^ X ) / ( ( T ^c U ) ^ X ) ) <_ ( X x. ( ( M x. T ) x. ( U + 1 ) ) ) ) |
| 228 |
62 227
|
eqbrtrd |
|- ( ( ph /\ X e. NN ) -> ( ( ( F ` N ) / ( T ^c U ) ) ^ X ) <_ ( X x. ( ( M x. T ) x. ( U + 1 ) ) ) ) |