| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qrng.q |
|- Q = ( CCfld |`s QQ ) |
| 2 |
|
qabsabv.a |
|- A = ( AbsVal ` Q ) |
| 3 |
|
ostthlem1.1 |
|- ( ph -> F e. A ) |
| 4 |
|
ostthlem1.2 |
|- ( ph -> G e. A ) |
| 5 |
|
ostthlem2.3 |
|- ( ( ph /\ p e. Prime ) -> ( F ` p ) = ( G ` p ) ) |
| 6 |
|
eluz2nn |
|- ( n e. ( ZZ>= ` 2 ) -> n e. NN ) |
| 7 |
|
fveq2 |
|- ( p = 1 -> ( F ` p ) = ( F ` 1 ) ) |
| 8 |
|
fveq2 |
|- ( p = 1 -> ( G ` p ) = ( G ` 1 ) ) |
| 9 |
7 8
|
eqeq12d |
|- ( p = 1 -> ( ( F ` p ) = ( G ` p ) <-> ( F ` 1 ) = ( G ` 1 ) ) ) |
| 10 |
9
|
imbi2d |
|- ( p = 1 -> ( ( ph -> ( F ` p ) = ( G ` p ) ) <-> ( ph -> ( F ` 1 ) = ( G ` 1 ) ) ) ) |
| 11 |
|
fveq2 |
|- ( p = y -> ( F ` p ) = ( F ` y ) ) |
| 12 |
|
fveq2 |
|- ( p = y -> ( G ` p ) = ( G ` y ) ) |
| 13 |
11 12
|
eqeq12d |
|- ( p = y -> ( ( F ` p ) = ( G ` p ) <-> ( F ` y ) = ( G ` y ) ) ) |
| 14 |
13
|
imbi2d |
|- ( p = y -> ( ( ph -> ( F ` p ) = ( G ` p ) ) <-> ( ph -> ( F ` y ) = ( G ` y ) ) ) ) |
| 15 |
|
fveq2 |
|- ( p = z -> ( F ` p ) = ( F ` z ) ) |
| 16 |
|
fveq2 |
|- ( p = z -> ( G ` p ) = ( G ` z ) ) |
| 17 |
15 16
|
eqeq12d |
|- ( p = z -> ( ( F ` p ) = ( G ` p ) <-> ( F ` z ) = ( G ` z ) ) ) |
| 18 |
17
|
imbi2d |
|- ( p = z -> ( ( ph -> ( F ` p ) = ( G ` p ) ) <-> ( ph -> ( F ` z ) = ( G ` z ) ) ) ) |
| 19 |
|
fveq2 |
|- ( p = ( y x. z ) -> ( F ` p ) = ( F ` ( y x. z ) ) ) |
| 20 |
|
fveq2 |
|- ( p = ( y x. z ) -> ( G ` p ) = ( G ` ( y x. z ) ) ) |
| 21 |
19 20
|
eqeq12d |
|- ( p = ( y x. z ) -> ( ( F ` p ) = ( G ` p ) <-> ( F ` ( y x. z ) ) = ( G ` ( y x. z ) ) ) ) |
| 22 |
21
|
imbi2d |
|- ( p = ( y x. z ) -> ( ( ph -> ( F ` p ) = ( G ` p ) ) <-> ( ph -> ( F ` ( y x. z ) ) = ( G ` ( y x. z ) ) ) ) ) |
| 23 |
|
fveq2 |
|- ( p = n -> ( F ` p ) = ( F ` n ) ) |
| 24 |
|
fveq2 |
|- ( p = n -> ( G ` p ) = ( G ` n ) ) |
| 25 |
23 24
|
eqeq12d |
|- ( p = n -> ( ( F ` p ) = ( G ` p ) <-> ( F ` n ) = ( G ` n ) ) ) |
| 26 |
25
|
imbi2d |
|- ( p = n -> ( ( ph -> ( F ` p ) = ( G ` p ) ) <-> ( ph -> ( F ` n ) = ( G ` n ) ) ) ) |
| 27 |
|
ax-1ne0 |
|- 1 =/= 0 |
| 28 |
1
|
qrng1 |
|- 1 = ( 1r ` Q ) |
| 29 |
1
|
qrng0 |
|- 0 = ( 0g ` Q ) |
| 30 |
2 28 29
|
abv1z |
|- ( ( F e. A /\ 1 =/= 0 ) -> ( F ` 1 ) = 1 ) |
| 31 |
3 27 30
|
sylancl |
|- ( ph -> ( F ` 1 ) = 1 ) |
| 32 |
2 28 29
|
abv1z |
|- ( ( G e. A /\ 1 =/= 0 ) -> ( G ` 1 ) = 1 ) |
| 33 |
4 27 32
|
sylancl |
|- ( ph -> ( G ` 1 ) = 1 ) |
| 34 |
31 33
|
eqtr4d |
|- ( ph -> ( F ` 1 ) = ( G ` 1 ) ) |
| 35 |
5
|
expcom |
|- ( p e. Prime -> ( ph -> ( F ` p ) = ( G ` p ) ) ) |
| 36 |
|
jcab |
|- ( ( ph -> ( ( F ` y ) = ( G ` y ) /\ ( F ` z ) = ( G ` z ) ) ) <-> ( ( ph -> ( F ` y ) = ( G ` y ) ) /\ ( ph -> ( F ` z ) = ( G ` z ) ) ) ) |
| 37 |
|
oveq12 |
|- ( ( ( F ` y ) = ( G ` y ) /\ ( F ` z ) = ( G ` z ) ) -> ( ( F ` y ) x. ( F ` z ) ) = ( ( G ` y ) x. ( G ` z ) ) ) |
| 38 |
3
|
adantr |
|- ( ( ph /\ ( y e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) ) -> F e. A ) |
| 39 |
|
eluzelz |
|- ( y e. ( ZZ>= ` 2 ) -> y e. ZZ ) |
| 40 |
39
|
ad2antrl |
|- ( ( ph /\ ( y e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) ) -> y e. ZZ ) |
| 41 |
|
zq |
|- ( y e. ZZ -> y e. QQ ) |
| 42 |
40 41
|
syl |
|- ( ( ph /\ ( y e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) ) -> y e. QQ ) |
| 43 |
|
eluzelz |
|- ( z e. ( ZZ>= ` 2 ) -> z e. ZZ ) |
| 44 |
43
|
ad2antll |
|- ( ( ph /\ ( y e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) ) -> z e. ZZ ) |
| 45 |
|
zq |
|- ( z e. ZZ -> z e. QQ ) |
| 46 |
44 45
|
syl |
|- ( ( ph /\ ( y e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) ) -> z e. QQ ) |
| 47 |
1
|
qrngbas |
|- QQ = ( Base ` Q ) |
| 48 |
|
qex |
|- QQ e. _V |
| 49 |
|
cnfldmul |
|- x. = ( .r ` CCfld ) |
| 50 |
1 49
|
ressmulr |
|- ( QQ e. _V -> x. = ( .r ` Q ) ) |
| 51 |
48 50
|
ax-mp |
|- x. = ( .r ` Q ) |
| 52 |
2 47 51
|
abvmul |
|- ( ( F e. A /\ y e. QQ /\ z e. QQ ) -> ( F ` ( y x. z ) ) = ( ( F ` y ) x. ( F ` z ) ) ) |
| 53 |
38 42 46 52
|
syl3anc |
|- ( ( ph /\ ( y e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) ) -> ( F ` ( y x. z ) ) = ( ( F ` y ) x. ( F ` z ) ) ) |
| 54 |
4
|
adantr |
|- ( ( ph /\ ( y e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) ) -> G e. A ) |
| 55 |
2 47 51
|
abvmul |
|- ( ( G e. A /\ y e. QQ /\ z e. QQ ) -> ( G ` ( y x. z ) ) = ( ( G ` y ) x. ( G ` z ) ) ) |
| 56 |
54 42 46 55
|
syl3anc |
|- ( ( ph /\ ( y e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) ) -> ( G ` ( y x. z ) ) = ( ( G ` y ) x. ( G ` z ) ) ) |
| 57 |
53 56
|
eqeq12d |
|- ( ( ph /\ ( y e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) ) -> ( ( F ` ( y x. z ) ) = ( G ` ( y x. z ) ) <-> ( ( F ` y ) x. ( F ` z ) ) = ( ( G ` y ) x. ( G ` z ) ) ) ) |
| 58 |
37 57
|
imbitrrid |
|- ( ( ph /\ ( y e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) ) -> ( ( ( F ` y ) = ( G ` y ) /\ ( F ` z ) = ( G ` z ) ) -> ( F ` ( y x. z ) ) = ( G ` ( y x. z ) ) ) ) |
| 59 |
58
|
expcom |
|- ( ( y e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) -> ( ph -> ( ( ( F ` y ) = ( G ` y ) /\ ( F ` z ) = ( G ` z ) ) -> ( F ` ( y x. z ) ) = ( G ` ( y x. z ) ) ) ) ) |
| 60 |
59
|
a2d |
|- ( ( y e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) -> ( ( ph -> ( ( F ` y ) = ( G ` y ) /\ ( F ` z ) = ( G ` z ) ) ) -> ( ph -> ( F ` ( y x. z ) ) = ( G ` ( y x. z ) ) ) ) ) |
| 61 |
36 60
|
biimtrrid |
|- ( ( y e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) -> ( ( ( ph -> ( F ` y ) = ( G ` y ) ) /\ ( ph -> ( F ` z ) = ( G ` z ) ) ) -> ( ph -> ( F ` ( y x. z ) ) = ( G ` ( y x. z ) ) ) ) ) |
| 62 |
10 14 18 22 26 34 35 61
|
prmind |
|- ( n e. NN -> ( ph -> ( F ` n ) = ( G ` n ) ) ) |
| 63 |
62
|
impcom |
|- ( ( ph /\ n e. NN ) -> ( F ` n ) = ( G ` n ) ) |
| 64 |
6 63
|
sylan2 |
|- ( ( ph /\ n e. ( ZZ>= ` 2 ) ) -> ( F ` n ) = ( G ` n ) ) |
| 65 |
1 2 3 4 64
|
ostthlem1 |
|- ( ph -> F = G ) |