Step |
Hyp |
Ref |
Expression |
1 |
|
osumcllem.l |
|- .<_ = ( le ` K ) |
2 |
|
osumcllem.j |
|- .\/ = ( join ` K ) |
3 |
|
osumcllem.a |
|- A = ( Atoms ` K ) |
4 |
|
osumcllem.p |
|- .+ = ( +P ` K ) |
5 |
|
osumcllem.o |
|- ._|_ = ( _|_P ` K ) |
6 |
|
osumcllem.c |
|- C = ( PSubCl ` K ) |
7 |
|
osumcllem.m |
|- M = ( X .+ { p } ) |
8 |
|
osumcllem.u |
|- U = ( ._|_ ` ( ._|_ ` ( X .+ Y ) ) ) |
9 |
|
simpl1 |
|- ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ p e. U ) -> K e. HL ) |
10 |
|
simpl2 |
|- ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ p e. U ) -> X C_ A ) |
11 |
|
simpr |
|- ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ p e. U ) -> p e. U ) |
12 |
11
|
snssd |
|- ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ p e. U ) -> { p } C_ U ) |
13 |
3 4
|
paddssat |
|- ( ( K e. HL /\ X C_ A /\ Y C_ A ) -> ( X .+ Y ) C_ A ) |
14 |
13
|
adantr |
|- ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ p e. U ) -> ( X .+ Y ) C_ A ) |
15 |
3 5
|
polssatN |
|- ( ( K e. HL /\ ( X .+ Y ) C_ A ) -> ( ._|_ ` ( X .+ Y ) ) C_ A ) |
16 |
9 14 15
|
syl2anc |
|- ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ p e. U ) -> ( ._|_ ` ( X .+ Y ) ) C_ A ) |
17 |
3 5
|
polssatN |
|- ( ( K e. HL /\ ( ._|_ ` ( X .+ Y ) ) C_ A ) -> ( ._|_ ` ( ._|_ ` ( X .+ Y ) ) ) C_ A ) |
18 |
9 16 17
|
syl2anc |
|- ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ p e. U ) -> ( ._|_ ` ( ._|_ ` ( X .+ Y ) ) ) C_ A ) |
19 |
8 18
|
eqsstrid |
|- ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ p e. U ) -> U C_ A ) |
20 |
12 19
|
sstrd |
|- ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ p e. U ) -> { p } C_ A ) |
21 |
3 4
|
sspadd1 |
|- ( ( K e. HL /\ X C_ A /\ { p } C_ A ) -> X C_ ( X .+ { p } ) ) |
22 |
9 10 20 21
|
syl3anc |
|- ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ p e. U ) -> X C_ ( X .+ { p } ) ) |
23 |
22 7
|
sseqtrrdi |
|- ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ p e. U ) -> X C_ M ) |
24 |
1 2 3 4 5 6 7 8
|
osumcllem1N |
|- ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ p e. U ) -> ( U i^i M ) = M ) |
25 |
23 24
|
sseqtrrd |
|- ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ p e. U ) -> X C_ ( U i^i M ) ) |