| Step |
Hyp |
Ref |
Expression |
| 1 |
|
osumcllem.l |
|- .<_ = ( le ` K ) |
| 2 |
|
osumcllem.j |
|- .\/ = ( join ` K ) |
| 3 |
|
osumcllem.a |
|- A = ( Atoms ` K ) |
| 4 |
|
osumcllem.p |
|- .+ = ( +P ` K ) |
| 5 |
|
osumcllem.o |
|- ._|_ = ( _|_P ` K ) |
| 6 |
|
osumcllem.c |
|- C = ( PSubCl ` K ) |
| 7 |
|
osumcllem.m |
|- M = ( X .+ { p } ) |
| 8 |
|
osumcllem.u |
|- U = ( ._|_ ` ( ._|_ ` ( X .+ Y ) ) ) |
| 9 |
|
simp11 |
|- ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ p e. A /\ ( r e. X /\ q e. Y /\ p .<_ ( r .\/ q ) ) ) -> K e. HL ) |
| 10 |
9
|
hllatd |
|- ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ p e. A /\ ( r e. X /\ q e. Y /\ p .<_ ( r .\/ q ) ) ) -> K e. Lat ) |
| 11 |
|
simp12 |
|- ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ p e. A /\ ( r e. X /\ q e. Y /\ p .<_ ( r .\/ q ) ) ) -> X C_ A ) |
| 12 |
|
simp13 |
|- ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ p e. A /\ ( r e. X /\ q e. Y /\ p .<_ ( r .\/ q ) ) ) -> Y C_ A ) |
| 13 |
|
simp31 |
|- ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ p e. A /\ ( r e. X /\ q e. Y /\ p .<_ ( r .\/ q ) ) ) -> r e. X ) |
| 14 |
|
simp32 |
|- ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ p e. A /\ ( r e. X /\ q e. Y /\ p .<_ ( r .\/ q ) ) ) -> q e. Y ) |
| 15 |
|
simp2 |
|- ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ p e. A /\ ( r e. X /\ q e. Y /\ p .<_ ( r .\/ q ) ) ) -> p e. A ) |
| 16 |
|
simp33 |
|- ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ p e. A /\ ( r e. X /\ q e. Y /\ p .<_ ( r .\/ q ) ) ) -> p .<_ ( r .\/ q ) ) |
| 17 |
1 2 3 4
|
elpaddri |
|- ( ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ ( r e. X /\ q e. Y ) /\ ( p e. A /\ p .<_ ( r .\/ q ) ) ) -> p e. ( X .+ Y ) ) |
| 18 |
10 11 12 13 14 15 16 17
|
syl322anc |
|- ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ p e. A /\ ( r e. X /\ q e. Y /\ p .<_ ( r .\/ q ) ) ) -> p e. ( X .+ Y ) ) |