Metamath Proof Explorer


Theorem osumcllem5N

Description: Lemma for osumclN . (Contributed by NM, 24-Mar-2012) (New usage is discouraged.)

Ref Expression
Hypotheses osumcllem.l
|- .<_ = ( le ` K )
osumcllem.j
|- .\/ = ( join ` K )
osumcllem.a
|- A = ( Atoms ` K )
osumcllem.p
|- .+ = ( +P ` K )
osumcllem.o
|- ._|_ = ( _|_P ` K )
osumcllem.c
|- C = ( PSubCl ` K )
osumcllem.m
|- M = ( X .+ { p } )
osumcllem.u
|- U = ( ._|_ ` ( ._|_ ` ( X .+ Y ) ) )
Assertion osumcllem5N
|- ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ p e. A /\ ( r e. X /\ q e. Y /\ p .<_ ( r .\/ q ) ) ) -> p e. ( X .+ Y ) )

Proof

Step Hyp Ref Expression
1 osumcllem.l
 |-  .<_ = ( le ` K )
2 osumcllem.j
 |-  .\/ = ( join ` K )
3 osumcllem.a
 |-  A = ( Atoms ` K )
4 osumcllem.p
 |-  .+ = ( +P ` K )
5 osumcllem.o
 |-  ._|_ = ( _|_P ` K )
6 osumcllem.c
 |-  C = ( PSubCl ` K )
7 osumcllem.m
 |-  M = ( X .+ { p } )
8 osumcllem.u
 |-  U = ( ._|_ ` ( ._|_ ` ( X .+ Y ) ) )
9 simp11
 |-  ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ p e. A /\ ( r e. X /\ q e. Y /\ p .<_ ( r .\/ q ) ) ) -> K e. HL )
10 9 hllatd
 |-  ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ p e. A /\ ( r e. X /\ q e. Y /\ p .<_ ( r .\/ q ) ) ) -> K e. Lat )
11 simp12
 |-  ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ p e. A /\ ( r e. X /\ q e. Y /\ p .<_ ( r .\/ q ) ) ) -> X C_ A )
12 simp13
 |-  ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ p e. A /\ ( r e. X /\ q e. Y /\ p .<_ ( r .\/ q ) ) ) -> Y C_ A )
13 simp31
 |-  ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ p e. A /\ ( r e. X /\ q e. Y /\ p .<_ ( r .\/ q ) ) ) -> r e. X )
14 simp32
 |-  ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ p e. A /\ ( r e. X /\ q e. Y /\ p .<_ ( r .\/ q ) ) ) -> q e. Y )
15 simp2
 |-  ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ p e. A /\ ( r e. X /\ q e. Y /\ p .<_ ( r .\/ q ) ) ) -> p e. A )
16 simp33
 |-  ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ p e. A /\ ( r e. X /\ q e. Y /\ p .<_ ( r .\/ q ) ) ) -> p .<_ ( r .\/ q ) )
17 1 2 3 4 elpaddri
 |-  ( ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ ( r e. X /\ q e. Y ) /\ ( p e. A /\ p .<_ ( r .\/ q ) ) ) -> p e. ( X .+ Y ) )
18 10 11 12 13 14 15 16 17 syl322anc
 |-  ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ p e. A /\ ( r e. X /\ q e. Y /\ p .<_ ( r .\/ q ) ) ) -> p e. ( X .+ Y ) )