Step |
Hyp |
Ref |
Expression |
1 |
|
osumcllem.l |
|- .<_ = ( le ` K ) |
2 |
|
osumcllem.j |
|- .\/ = ( join ` K ) |
3 |
|
osumcllem.a |
|- A = ( Atoms ` K ) |
4 |
|
osumcllem.p |
|- .+ = ( +P ` K ) |
5 |
|
osumcllem.o |
|- ._|_ = ( _|_P ` K ) |
6 |
|
osumcllem.c |
|- C = ( PSubCl ` K ) |
7 |
|
osumcllem.m |
|- M = ( X .+ { p } ) |
8 |
|
osumcllem.u |
|- U = ( ._|_ ` ( ._|_ ` ( X .+ Y ) ) ) |
9 |
|
simp11 |
|- ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ ( X C_ ( ._|_ ` Y ) /\ X =/= (/) /\ p e. A ) /\ q e. ( Y i^i M ) ) -> K e. HL ) |
10 |
9
|
hllatd |
|- ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ ( X C_ ( ._|_ ` Y ) /\ X =/= (/) /\ p e. A ) /\ q e. ( Y i^i M ) ) -> K e. Lat ) |
11 |
|
simp12 |
|- ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ ( X C_ ( ._|_ ` Y ) /\ X =/= (/) /\ p e. A ) /\ q e. ( Y i^i M ) ) -> X C_ A ) |
12 |
|
simp23 |
|- ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ ( X C_ ( ._|_ ` Y ) /\ X =/= (/) /\ p e. A ) /\ q e. ( Y i^i M ) ) -> p e. A ) |
13 |
|
simp22 |
|- ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ ( X C_ ( ._|_ ` Y ) /\ X =/= (/) /\ p e. A ) /\ q e. ( Y i^i M ) ) -> X =/= (/) ) |
14 |
|
inss2 |
|- ( Y i^i M ) C_ M |
15 |
14
|
sseli |
|- ( q e. ( Y i^i M ) -> q e. M ) |
16 |
15
|
3ad2ant3 |
|- ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ ( X C_ ( ._|_ ` Y ) /\ X =/= (/) /\ p e. A ) /\ q e. ( Y i^i M ) ) -> q e. M ) |
17 |
16 7
|
eleqtrdi |
|- ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ ( X C_ ( ._|_ ` Y ) /\ X =/= (/) /\ p e. A ) /\ q e. ( Y i^i M ) ) -> q e. ( X .+ { p } ) ) |
18 |
1 2 3 4
|
elpaddatiN |
|- ( ( ( K e. Lat /\ X C_ A /\ p e. A ) /\ ( X =/= (/) /\ q e. ( X .+ { p } ) ) ) -> E. r e. X q .<_ ( r .\/ p ) ) |
19 |
10 11 12 13 17 18
|
syl32anc |
|- ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ ( X C_ ( ._|_ ` Y ) /\ X =/= (/) /\ p e. A ) /\ q e. ( Y i^i M ) ) -> E. r e. X q .<_ ( r .\/ p ) ) |
20 |
|
simp11 |
|- ( ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ ( X C_ ( ._|_ ` Y ) /\ X =/= (/) /\ p e. A ) /\ q e. ( Y i^i M ) ) /\ r e. X /\ q .<_ ( r .\/ p ) ) -> ( K e. HL /\ X C_ A /\ Y C_ A ) ) |
21 |
|
simp121 |
|- ( ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ ( X C_ ( ._|_ ` Y ) /\ X =/= (/) /\ p e. A ) /\ q e. ( Y i^i M ) ) /\ r e. X /\ q .<_ ( r .\/ p ) ) -> X C_ ( ._|_ ` Y ) ) |
22 |
|
simp123 |
|- ( ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ ( X C_ ( ._|_ ` Y ) /\ X =/= (/) /\ p e. A ) /\ q e. ( Y i^i M ) ) /\ r e. X /\ q .<_ ( r .\/ p ) ) -> p e. A ) |
23 |
|
simp2 |
|- ( ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ ( X C_ ( ._|_ ` Y ) /\ X =/= (/) /\ p e. A ) /\ q e. ( Y i^i M ) ) /\ r e. X /\ q .<_ ( r .\/ p ) ) -> r e. X ) |
24 |
|
inss1 |
|- ( Y i^i M ) C_ Y |
25 |
|
simp13 |
|- ( ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ ( X C_ ( ._|_ ` Y ) /\ X =/= (/) /\ p e. A ) /\ q e. ( Y i^i M ) ) /\ r e. X /\ q .<_ ( r .\/ p ) ) -> q e. ( Y i^i M ) ) |
26 |
24 25
|
sselid |
|- ( ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ ( X C_ ( ._|_ ` Y ) /\ X =/= (/) /\ p e. A ) /\ q e. ( Y i^i M ) ) /\ r e. X /\ q .<_ ( r .\/ p ) ) -> q e. Y ) |
27 |
|
simp3 |
|- ( ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ ( X C_ ( ._|_ ` Y ) /\ X =/= (/) /\ p e. A ) /\ q e. ( Y i^i M ) ) /\ r e. X /\ q .<_ ( r .\/ p ) ) -> q .<_ ( r .\/ p ) ) |
28 |
1 2 3 4 5 6 7 8
|
osumcllem6N |
|- ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ ( X C_ ( ._|_ ` Y ) /\ p e. A ) /\ ( r e. X /\ q e. Y /\ q .<_ ( r .\/ p ) ) ) -> p e. ( X .+ Y ) ) |
29 |
20 21 22 23 26 27 28
|
syl123anc |
|- ( ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ ( X C_ ( ._|_ ` Y ) /\ X =/= (/) /\ p e. A ) /\ q e. ( Y i^i M ) ) /\ r e. X /\ q .<_ ( r .\/ p ) ) -> p e. ( X .+ Y ) ) |
30 |
29
|
rexlimdv3a |
|- ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ ( X C_ ( ._|_ ` Y ) /\ X =/= (/) /\ p e. A ) /\ q e. ( Y i^i M ) ) -> ( E. r e. X q .<_ ( r .\/ p ) -> p e. ( X .+ Y ) ) ) |
31 |
19 30
|
mpd |
|- ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ ( X C_ ( ._|_ ` Y ) /\ X =/= (/) /\ p e. A ) /\ q e. ( Y i^i M ) ) -> p e. ( X .+ Y ) ) |