Step |
Hyp |
Ref |
Expression |
1 |
|
osumcllem.l |
|- .<_ = ( le ` K ) |
2 |
|
osumcllem.j |
|- .\/ = ( join ` K ) |
3 |
|
osumcllem.a |
|- A = ( Atoms ` K ) |
4 |
|
osumcllem.p |
|- .+ = ( +P ` K ) |
5 |
|
osumcllem.o |
|- ._|_ = ( _|_P ` K ) |
6 |
|
osumcllem.c |
|- C = ( PSubCl ` K ) |
7 |
|
osumcllem.m |
|- M = ( X .+ { p } ) |
8 |
|
osumcllem.u |
|- U = ( ._|_ ` ( ._|_ ` ( X .+ Y ) ) ) |
9 |
|
n0 |
|- ( ( Y i^i M ) =/= (/) <-> E. q q e. ( Y i^i M ) ) |
10 |
1 2 3 4 5 6 7 8
|
osumcllem7N |
|- ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ ( X C_ ( ._|_ ` Y ) /\ X =/= (/) /\ p e. A ) /\ q e. ( Y i^i M ) ) -> p e. ( X .+ Y ) ) |
11 |
10
|
3expia |
|- ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ ( X C_ ( ._|_ ` Y ) /\ X =/= (/) /\ p e. A ) ) -> ( q e. ( Y i^i M ) -> p e. ( X .+ Y ) ) ) |
12 |
11
|
exlimdv |
|- ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ ( X C_ ( ._|_ ` Y ) /\ X =/= (/) /\ p e. A ) ) -> ( E. q q e. ( Y i^i M ) -> p e. ( X .+ Y ) ) ) |
13 |
9 12
|
syl5bi |
|- ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ ( X C_ ( ._|_ ` Y ) /\ X =/= (/) /\ p e. A ) ) -> ( ( Y i^i M ) =/= (/) -> p e. ( X .+ Y ) ) ) |
14 |
13
|
necon1bd |
|- ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ ( X C_ ( ._|_ ` Y ) /\ X =/= (/) /\ p e. A ) ) -> ( -. p e. ( X .+ Y ) -> ( Y i^i M ) = (/) ) ) |
15 |
14
|
3impia |
|- ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ ( X C_ ( ._|_ ` Y ) /\ X =/= (/) /\ p e. A ) /\ -. p e. ( X .+ Y ) ) -> ( Y i^i M ) = (/) ) |