Step |
Hyp |
Ref |
Expression |
1 |
|
osum.1 |
|- A e. CH |
2 |
|
osum.2 |
|- B e. CH |
3 |
|
inss2 |
|- ( A i^i B ) C_ B |
4 |
1
|
choccli |
|- ( _|_ ` A ) e. CH |
5 |
2 4
|
chub2i |
|- B C_ ( ( _|_ ` A ) vH B ) |
6 |
3 5
|
sstri |
|- ( A i^i B ) C_ ( ( _|_ ` A ) vH B ) |
7 |
1 2
|
chdmm3i |
|- ( _|_ ` ( A i^i ( _|_ ` B ) ) ) = ( ( _|_ ` A ) vH B ) |
8 |
6 7
|
sseqtrri |
|- ( A i^i B ) C_ ( _|_ ` ( A i^i ( _|_ ` B ) ) ) |
9 |
1 2
|
chincli |
|- ( A i^i B ) e. CH |
10 |
2
|
choccli |
|- ( _|_ ` B ) e. CH |
11 |
1 10
|
chincli |
|- ( A i^i ( _|_ ` B ) ) e. CH |
12 |
9 11
|
osumi |
|- ( ( A i^i B ) C_ ( _|_ ` ( A i^i ( _|_ ` B ) ) ) -> ( ( A i^i B ) +H ( A i^i ( _|_ ` B ) ) ) = ( ( A i^i B ) vH ( A i^i ( _|_ ` B ) ) ) ) |
13 |
8 12
|
ax-mp |
|- ( ( A i^i B ) +H ( A i^i ( _|_ ` B ) ) ) = ( ( A i^i B ) vH ( A i^i ( _|_ ` B ) ) ) |