| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-ot |
|- <. A , B , C >. = <. <. A , B >. , C >. |
| 2 |
1
|
fveq2i |
|- ( 1st ` <. A , B , C >. ) = ( 1st ` <. <. A , B >. , C >. ) |
| 3 |
|
opex |
|- <. A , B >. e. _V |
| 4 |
|
op1stg |
|- ( ( <. A , B >. e. _V /\ C e. X ) -> ( 1st ` <. <. A , B >. , C >. ) = <. A , B >. ) |
| 5 |
3 4
|
mpan |
|- ( C e. X -> ( 1st ` <. <. A , B >. , C >. ) = <. A , B >. ) |
| 6 |
2 5
|
eqtrid |
|- ( C e. X -> ( 1st ` <. A , B , C >. ) = <. A , B >. ) |
| 7 |
6
|
fveq2d |
|- ( C e. X -> ( 2nd ` ( 1st ` <. A , B , C >. ) ) = ( 2nd ` <. A , B >. ) ) |
| 8 |
|
op2ndg |
|- ( ( A e. V /\ B e. W ) -> ( 2nd ` <. A , B >. ) = B ) |
| 9 |
7 8
|
sylan9eqr |
|- ( ( ( A e. V /\ B e. W ) /\ C e. X ) -> ( 2nd ` ( 1st ` <. A , B , C >. ) ) = B ) |
| 10 |
9
|
3impa |
|- ( ( A e. V /\ B e. W /\ C e. X ) -> ( 2nd ` ( 1st ` <. A , B , C >. ) ) = B ) |