Metamath Proof Explorer


Theorem ot3rdg

Description: Extract the third member of an ordered triple. (See ot1stg comment.) (Contributed by NM, 3-Apr-2015)

Ref Expression
Assertion ot3rdg
|- ( C e. V -> ( 2nd ` <. A , B , C >. ) = C )

Proof

Step Hyp Ref Expression
1 df-ot
 |-  <. A , B , C >. = <. <. A , B >. , C >.
2 1 fveq2i
 |-  ( 2nd ` <. A , B , C >. ) = ( 2nd ` <. <. A , B >. , C >. )
3 opex
 |-  <. A , B >. e. _V
4 op2ndg
 |-  ( ( <. A , B >. e. _V /\ C e. V ) -> ( 2nd ` <. <. A , B >. , C >. ) = C )
5 3 4 mpan
 |-  ( C e. V -> ( 2nd ` <. <. A , B >. , C >. ) = C )
6 2 5 eqtrid
 |-  ( C e. V -> ( 2nd ` <. A , B , C >. ) = C )