Metamath Proof Explorer


Theorem otelxp1

Description: The first member of an ordered triple of classes in a Cartesian product belongs to first Cartesian product argument. (Contributed by NM, 28-May-2008)

Ref Expression
Assertion otelxp1
|- ( <. <. A , B >. , C >. e. ( ( R X. S ) X. T ) -> A e. R )

Proof

Step Hyp Ref Expression
1 opelxp1
 |-  ( <. <. A , B >. , C >. e. ( ( R X. S ) X. T ) -> <. A , B >. e. ( R X. S ) )
2 opelxp1
 |-  ( <. A , B >. e. ( R X. S ) -> A e. R )
3 1 2 syl
 |-  ( <. <. A , B >. , C >. e. ( ( R X. S ) X. T ) -> A e. R )