Description: Equality theorem for ordered triples. (Contributed by NM, 3-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | oteq1 | |- ( A = B -> <. A , C , D >. = <. B , C , D >. ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1 | |- ( A = B -> <. A , C >. = <. B , C >. ) |
|
2 | 1 | opeq1d | |- ( A = B -> <. <. A , C >. , D >. = <. <. B , C >. , D >. ) |
3 | df-ot | |- <. A , C , D >. = <. <. A , C >. , D >. |
|
4 | df-ot | |- <. B , C , D >. = <. <. B , C >. , D >. |
|
5 | 2 3 4 | 3eqtr4g | |- ( A = B -> <. A , C , D >. = <. B , C , D >. ) |