Metamath Proof Explorer


Theorem oteq1

Description: Equality theorem for ordered triples. (Contributed by NM, 3-Apr-2015)

Ref Expression
Assertion oteq1
|- ( A = B -> <. A , C , D >. = <. B , C , D >. )

Proof

Step Hyp Ref Expression
1 opeq1
 |-  ( A = B -> <. A , C >. = <. B , C >. )
2 1 opeq1d
 |-  ( A = B -> <. <. A , C >. , D >. = <. <. B , C >. , D >. )
3 df-ot
 |-  <. A , C , D >. = <. <. A , C >. , D >.
4 df-ot
 |-  <. B , C , D >. = <. <. B , C >. , D >.
5 2 3 4 3eqtr4g
 |-  ( A = B -> <. A , C , D >. = <. B , C , D >. )