Metamath Proof Explorer


Theorem oteq123d

Description: Equality deduction for ordered triples. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses oteq1d.1
|- ( ph -> A = B )
oteq123d.2
|- ( ph -> C = D )
oteq123d.3
|- ( ph -> E = F )
Assertion oteq123d
|- ( ph -> <. A , C , E >. = <. B , D , F >. )

Proof

Step Hyp Ref Expression
1 oteq1d.1
 |-  ( ph -> A = B )
2 oteq123d.2
 |-  ( ph -> C = D )
3 oteq123d.3
 |-  ( ph -> E = F )
4 1 oteq1d
 |-  ( ph -> <. A , C , E >. = <. B , C , E >. )
5 2 oteq2d
 |-  ( ph -> <. B , C , E >. = <. B , D , E >. )
6 3 oteq3d
 |-  ( ph -> <. B , D , E >. = <. B , D , F >. )
7 4 5 6 3eqtrd
 |-  ( ph -> <. A , C , E >. = <. B , D , F >. )