Description: Equality deduction for ordered triples. (Contributed by Mario Carneiro, 11-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | oteq1d.1 | |- ( ph -> A = B ) |
|
oteq123d.2 | |- ( ph -> C = D ) |
||
oteq123d.3 | |- ( ph -> E = F ) |
||
Assertion | oteq123d | |- ( ph -> <. A , C , E >. = <. B , D , F >. ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oteq1d.1 | |- ( ph -> A = B ) |
|
2 | oteq123d.2 | |- ( ph -> C = D ) |
|
3 | oteq123d.3 | |- ( ph -> E = F ) |
|
4 | 1 | oteq1d | |- ( ph -> <. A , C , E >. = <. B , C , E >. ) |
5 | 2 | oteq2d | |- ( ph -> <. B , C , E >. = <. B , D , E >. ) |
6 | 3 | oteq3d | |- ( ph -> <. B , D , E >. = <. B , D , F >. ) |
7 | 4 5 6 | 3eqtrd | |- ( ph -> <. A , C , E >. = <. B , D , F >. ) |