Description: Equality deduction for ordered triples. (Contributed by Mario Carneiro, 11-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oteq1d.1 | |- ( ph -> A = B )  | 
					|
| oteq123d.2 | |- ( ph -> C = D )  | 
					||
| oteq123d.3 | |- ( ph -> E = F )  | 
					||
| Assertion | oteq123d | |- ( ph -> <. A , C , E >. = <. B , D , F >. )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | oteq1d.1 | |- ( ph -> A = B )  | 
						|
| 2 | oteq123d.2 | |- ( ph -> C = D )  | 
						|
| 3 | oteq123d.3 | |- ( ph -> E = F )  | 
						|
| 4 | 1 | oteq1d | |- ( ph -> <. A , C , E >. = <. B , C , E >. )  | 
						
| 5 | 2 | oteq2d | |- ( ph -> <. B , C , E >. = <. B , D , E >. )  | 
						
| 6 | 3 | oteq3d | |- ( ph -> <. B , D , E >. = <. B , D , F >. )  | 
						
| 7 | 4 5 6 | 3eqtrd | |- ( ph -> <. A , C , E >. = <. B , D , F >. )  |