Metamath Proof Explorer


Theorem oteq2

Description: Equality theorem for ordered triples. (Contributed by NM, 3-Apr-2015)

Ref Expression
Assertion oteq2
|- ( A = B -> <. C , A , D >. = <. C , B , D >. )

Proof

Step Hyp Ref Expression
1 opeq2
 |-  ( A = B -> <. C , A >. = <. C , B >. )
2 1 opeq1d
 |-  ( A = B -> <. <. C , A >. , D >. = <. <. C , B >. , D >. )
3 df-ot
 |-  <. C , A , D >. = <. <. C , A >. , D >.
4 df-ot
 |-  <. C , B , D >. = <. <. C , B >. , D >.
5 2 3 4 3eqtr4g
 |-  ( A = B -> <. C , A , D >. = <. C , B , D >. )