Description: Equality theorem for ordered triples. (Contributed by NM, 3-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | oteq2 | |- ( A = B -> <. C , A , D >. = <. C , B , D >. ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq2 | |- ( A = B -> <. C , A >. = <. C , B >. ) |
|
2 | 1 | opeq1d | |- ( A = B -> <. <. C , A >. , D >. = <. <. C , B >. , D >. ) |
3 | df-ot | |- <. C , A , D >. = <. <. C , A >. , D >. |
|
4 | df-ot | |- <. C , B , D >. = <. <. C , B >. , D >. |
|
5 | 2 3 4 | 3eqtr4g | |- ( A = B -> <. C , A , D >. = <. C , B , D >. ) |