Metamath Proof Explorer


Theorem oteq2d

Description: Equality deduction for ordered triples. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypothesis oteq1d.1
|- ( ph -> A = B )
Assertion oteq2d
|- ( ph -> <. C , A , D >. = <. C , B , D >. )

Proof

Step Hyp Ref Expression
1 oteq1d.1
 |-  ( ph -> A = B )
2 oteq2
 |-  ( A = B -> <. C , A , D >. = <. C , B , D >. )
3 1 2 syl
 |-  ( ph -> <. C , A , D >. = <. C , B , D >. )