Description: Equality deduction for ordered triples. (Contributed by Mario Carneiro, 11-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | oteq1d.1 | |- ( ph -> A = B ) | |
| Assertion | oteq2d | |- ( ph -> <. C , A , D >. = <. C , B , D >. ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | oteq1d.1 | |- ( ph -> A = B ) | |
| 2 | oteq2 | |- ( A = B -> <. C , A , D >. = <. C , B , D >. ) | |
| 3 | 1 2 | syl | |- ( ph -> <. C , A , D >. = <. C , B , D >. ) |