Description: Equality theorem for ordered triples. (Contributed by NM, 3-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oteq3 | |- ( A = B -> <. C , D , A >. = <. C , D , B >. ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | opeq2 | |- ( A = B -> <. <. C , D >. , A >. = <. <. C , D >. , B >. ) | |
| 2 | df-ot | |- <. C , D , A >. = <. <. C , D >. , A >. | |
| 3 | df-ot | |- <. C , D , B >. = <. <. C , D >. , B >. | |
| 4 | 1 2 3 | 3eqtr4g | |- ( A = B -> <. C , D , A >. = <. C , D , B >. ) |