Description: Equality deduction for ordered triples. (Contributed by Mario Carneiro, 11-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypothesis | oteq1d.1 | |- ( ph -> A = B ) |
|
Assertion | oteq3d | |- ( ph -> <. C , D , A >. = <. C , D , B >. ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oteq1d.1 | |- ( ph -> A = B ) |
|
2 | oteq3 | |- ( A = B -> <. C , D , A >. = <. C , D , B >. ) |
|
3 | 1 2 | syl | |- ( ph -> <. C , D , A >. = <. C , D , B >. ) |