Description: Equivalence of existence implied by equality of ordered triples. (Contributed by NM, 26-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | oteqex2 | |- ( <. <. A , B >. , C >. = <. <. R , S >. , T >. -> ( C e. _V <-> T e. _V ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeqex | |- ( <. <. A , B >. , C >. = <. <. R , S >. , T >. -> ( ( <. A , B >. e. _V /\ C e. _V ) <-> ( <. R , S >. e. _V /\ T e. _V ) ) ) |
|
2 | opex | |- <. A , B >. e. _V |
|
3 | 2 | biantrur | |- ( C e. _V <-> ( <. A , B >. e. _V /\ C e. _V ) ) |
4 | opex | |- <. R , S >. e. _V |
|
5 | 4 | biantrur | |- ( T e. _V <-> ( <. R , S >. e. _V /\ T e. _V ) ) |
6 | 1 3 5 | 3bitr4g | |- ( <. <. A , B >. , C >. = <. <. R , S >. , T >. -> ( C e. _V <-> T e. _V ) ) |