Metamath Proof Explorer


Theorem oteqex2

Description: Equivalence of existence implied by equality of ordered triples. (Contributed by NM, 26-Apr-2015)

Ref Expression
Assertion oteqex2
|- ( <. <. A , B >. , C >. = <. <. R , S >. , T >. -> ( C e. _V <-> T e. _V ) )

Proof

Step Hyp Ref Expression
1 opeqex
 |-  ( <. <. A , B >. , C >. = <. <. R , S >. , T >. -> ( ( <. A , B >. e. _V /\ C e. _V ) <-> ( <. R , S >. e. _V /\ T e. _V ) ) )
2 opex
 |-  <. A , B >. e. _V
3 2 biantrur
 |-  ( C e. _V <-> ( <. A , B >. e. _V /\ C e. _V ) )
4 opex
 |-  <. R , S >. e. _V
5 4 biantrur
 |-  ( T e. _V <-> ( <. R , S >. e. _V /\ T e. _V ) )
6 1 3 5 3bitr4g
 |-  ( <. <. A , B >. , C >. = <. <. R , S >. , T >. -> ( C e. _V <-> T e. _V ) )