Description: Equivalence of existence implied by equality of ordered triples. (Contributed by NM, 26-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oteqex2 | |- ( <. <. A , B >. , C >. = <. <. R , S >. , T >. -> ( C e. _V <-> T e. _V ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | opeqex | |- ( <. <. A , B >. , C >. = <. <. R , S >. , T >. -> ( ( <. A , B >. e. _V /\ C e. _V ) <-> ( <. R , S >. e. _V /\ T e. _V ) ) ) | |
| 2 | opex | |- <. A , B >. e. _V | |
| 3 | 2 | biantrur | |- ( C e. _V <-> ( <. A , B >. e. _V /\ C e. _V ) ) | 
| 4 | opex | |- <. R , S >. e. _V | |
| 5 | 4 | biantrur | |- ( T e. _V <-> ( <. R , S >. e. _V /\ T e. _V ) ) | 
| 6 | 1 3 5 | 3bitr4g | |- ( <. <. A , B >. , C >. = <. <. R , S >. , T >. -> ( C e. _V <-> T e. _V ) ) |