Description: Functionality of a topological ordered space. (Contributed by Mario Carneiro, 12-Nov-2015) (Revised by AV, 9-Sep-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | otpsstr.w | |- K = { <. ( Base ` ndx ) , B >. , <. ( TopSet ` ndx ) , J >. , <. ( le ` ndx ) , .<_ >. } |
|
Assertion | otpsstr | |- K Struct <. 1 , ; 1 0 >. |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | otpsstr.w | |- K = { <. ( Base ` ndx ) , B >. , <. ( TopSet ` ndx ) , J >. , <. ( le ` ndx ) , .<_ >. } |
|
2 | 1nn | |- 1 e. NN |
|
3 | basendx | |- ( Base ` ndx ) = 1 |
|
4 | 1lt9 | |- 1 < 9 |
|
5 | 9nn | |- 9 e. NN |
|
6 | tsetndx | |- ( TopSet ` ndx ) = 9 |
|
7 | 9lt10 | |- 9 < ; 1 0 |
|
8 | 10nn | |- ; 1 0 e. NN |
|
9 | plendx | |- ( le ` ndx ) = ; 1 0 |
|
10 | 2 3 4 5 6 7 8 9 | strle3 | |- { <. ( Base ` ndx ) , B >. , <. ( TopSet ` ndx ) , J >. , <. ( le ` ndx ) , .<_ >. } Struct <. 1 , ; 1 0 >. |
11 | 1 10 | eqbrtri | |- K Struct <. 1 , ; 1 0 >. |