Metamath Proof Explorer


Theorem otpsstr

Description: Functionality of a topological ordered space. (Contributed by Mario Carneiro, 12-Nov-2015) (Revised by AV, 9-Sep-2021)

Ref Expression
Hypothesis otpsstr.w
|- K = { <. ( Base ` ndx ) , B >. , <. ( TopSet ` ndx ) , J >. , <. ( le ` ndx ) , .<_ >. }
Assertion otpsstr
|- K Struct <. 1 , ; 1 0 >.

Proof

Step Hyp Ref Expression
1 otpsstr.w
 |-  K = { <. ( Base ` ndx ) , B >. , <. ( TopSet ` ndx ) , J >. , <. ( le ` ndx ) , .<_ >. }
2 1nn
 |-  1 e. NN
3 basendx
 |-  ( Base ` ndx ) = 1
4 1lt9
 |-  1 < 9
5 9nn
 |-  9 e. NN
6 tsetndx
 |-  ( TopSet ` ndx ) = 9
7 9lt10
 |-  9 < ; 1 0
8 10nn
 |-  ; 1 0 e. NN
9 plendx
 |-  ( le ` ndx ) = ; 1 0
10 2 3 4 5 6 7 8 9 strle3
 |-  { <. ( Base ` ndx ) , B >. , <. ( TopSet ` ndx ) , J >. , <. ( le ` ndx ) , .<_ >. } Struct <. 1 , ; 1 0 >.
11 1 10 eqbrtri
 |-  K Struct <. 1 , ; 1 0 >.