Description: Ordered triple theorem. (Contributed by NM, 25-Sep-2014) (Revised by Mario Carneiro, 26-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | otth.1 | |- A e. _V |
|
otth.2 | |- B e. _V |
||
otth.3 | |- R e. _V |
||
Assertion | otth | |- ( <. A , B , R >. = <. C , D , S >. <-> ( A = C /\ B = D /\ R = S ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | otth.1 | |- A e. _V |
|
2 | otth.2 | |- B e. _V |
|
3 | otth.3 | |- R e. _V |
|
4 | df-ot | |- <. A , B , R >. = <. <. A , B >. , R >. |
|
5 | df-ot | |- <. C , D , S >. = <. <. C , D >. , S >. |
|
6 | 4 5 | eqeq12i | |- ( <. A , B , R >. = <. C , D , S >. <-> <. <. A , B >. , R >. = <. <. C , D >. , S >. ) |
7 | 1 2 3 | otth2 | |- ( <. <. A , B >. , R >. = <. <. C , D >. , S >. <-> ( A = C /\ B = D /\ R = S ) ) |
8 | 6 7 | bitri | |- ( <. A , B , R >. = <. C , D , S >. <-> ( A = C /\ B = D /\ R = S ) ) |