Description: Ordered triple theorem. (Contributed by NM, 25-Sep-2014) (Revised by Mario Carneiro, 26-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | otth.1 | |- A e. _V | |
| otth.2 | |- B e. _V | ||
| otth.3 | |- R e. _V | ||
| Assertion | otth | |- ( <. A , B , R >. = <. C , D , S >. <-> ( A = C /\ B = D /\ R = S ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | otth.1 | |- A e. _V | |
| 2 | otth.2 | |- B e. _V | |
| 3 | otth.3 | |- R e. _V | |
| 4 | df-ot | |- <. A , B , R >. = <. <. A , B >. , R >. | |
| 5 | df-ot | |- <. C , D , S >. = <. <. C , D >. , S >. | |
| 6 | 4 5 | eqeq12i | |- ( <. A , B , R >. = <. C , D , S >. <-> <. <. A , B >. , R >. = <. <. C , D >. , S >. ) | 
| 7 | 1 2 3 | otth2 | |- ( <. <. A , B >. , R >. = <. <. C , D >. , S >. <-> ( A = C /\ B = D /\ R = S ) ) | 
| 8 | 6 7 | bitri | |- ( <. A , B , R >. = <. C , D , S >. <-> ( A = C /\ B = D /\ R = S ) ) |