Step |
Hyp |
Ref |
Expression |
1 |
|
otth.1 |
|- A e. _V |
2 |
|
otth.2 |
|- B e. _V |
3 |
|
otth.3 |
|- R e. _V |
4 |
1 2
|
opth |
|- ( <. A , B >. = <. C , D >. <-> ( A = C /\ B = D ) ) |
5 |
4
|
anbi1i |
|- ( ( <. A , B >. = <. C , D >. /\ R = S ) <-> ( ( A = C /\ B = D ) /\ R = S ) ) |
6 |
|
opex |
|- <. A , B >. e. _V |
7 |
6 3
|
opth |
|- ( <. <. A , B >. , R >. = <. <. C , D >. , S >. <-> ( <. A , B >. = <. C , D >. /\ R = S ) ) |
8 |
|
df-3an |
|- ( ( A = C /\ B = D /\ R = S ) <-> ( ( A = C /\ B = D ) /\ R = S ) ) |
9 |
5 7 8
|
3bitr4i |
|- ( <. <. A , B >. , R >. = <. <. C , D >. , S >. <-> ( A = C /\ B = D /\ R = S ) ) |