Step |
Hyp |
Ref |
Expression |
1 |
|
otthne.1 |
|- A e. _V |
2 |
|
otthne.2 |
|- B e. _V |
3 |
|
otthne.3 |
|- C e. _V |
4 |
1 2 3
|
otth |
|- ( <. A , B , C >. = <. D , E , F >. <-> ( A = D /\ B = E /\ C = F ) ) |
5 |
4
|
notbii |
|- ( -. <. A , B , C >. = <. D , E , F >. <-> -. ( A = D /\ B = E /\ C = F ) ) |
6 |
|
3ianor |
|- ( -. ( A = D /\ B = E /\ C = F ) <-> ( -. A = D \/ -. B = E \/ -. C = F ) ) |
7 |
5 6
|
bitri |
|- ( -. <. A , B , C >. = <. D , E , F >. <-> ( -. A = D \/ -. B = E \/ -. C = F ) ) |
8 |
|
df-ne |
|- ( <. A , B , C >. =/= <. D , E , F >. <-> -. <. A , B , C >. = <. D , E , F >. ) |
9 |
|
df-ne |
|- ( A =/= D <-> -. A = D ) |
10 |
|
df-ne |
|- ( B =/= E <-> -. B = E ) |
11 |
|
df-ne |
|- ( C =/= F <-> -. C = F ) |
12 |
9 10 11
|
3orbi123i |
|- ( ( A =/= D \/ B =/= E \/ C =/= F ) <-> ( -. A = D \/ -. B = E \/ -. C = F ) ) |
13 |
7 8 12
|
3bitr4i |
|- ( <. A , B , C >. =/= <. D , E , F >. <-> ( A =/= D \/ B =/= E \/ C =/= F ) ) |