| Step | Hyp | Ref | Expression | 
						
							| 1 |  | otthne.1 |  |-  A e. _V | 
						
							| 2 |  | otthne.2 |  |-  B e. _V | 
						
							| 3 |  | otthne.3 |  |-  C e. _V | 
						
							| 4 | 1 2 3 | otth |  |-  ( <. A , B , C >. = <. D , E , F >. <-> ( A = D /\ B = E /\ C = F ) ) | 
						
							| 5 | 4 | notbii |  |-  ( -. <. A , B , C >. = <. D , E , F >. <-> -. ( A = D /\ B = E /\ C = F ) ) | 
						
							| 6 |  | 3ianor |  |-  ( -. ( A = D /\ B = E /\ C = F ) <-> ( -. A = D \/ -. B = E \/ -. C = F ) ) | 
						
							| 7 | 5 6 | bitri |  |-  ( -. <. A , B , C >. = <. D , E , F >. <-> ( -. A = D \/ -. B = E \/ -. C = F ) ) | 
						
							| 8 |  | df-ne |  |-  ( <. A , B , C >. =/= <. D , E , F >. <-> -. <. A , B , C >. = <. D , E , F >. ) | 
						
							| 9 |  | df-ne |  |-  ( A =/= D <-> -. A = D ) | 
						
							| 10 |  | df-ne |  |-  ( B =/= E <-> -. B = E ) | 
						
							| 11 |  | df-ne |  |-  ( C =/= F <-> -. C = F ) | 
						
							| 12 | 9 10 11 | 3orbi123i |  |-  ( ( A =/= D \/ B =/= E \/ C =/= F ) <-> ( -. A = D \/ -. B = E \/ -. C = F ) ) | 
						
							| 13 | 7 8 12 | 3bitr4i |  |-  ( <. A , B , C >. =/= <. D , E , F >. <-> ( A =/= D \/ B =/= E \/ C =/= F ) ) |