| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ov2gf.a |  |-  F/_ x A | 
						
							| 2 |  | ov2gf.c |  |-  F/_ y A | 
						
							| 3 |  | ov2gf.d |  |-  F/_ y B | 
						
							| 4 |  | ov2gf.1 |  |-  F/_ x G | 
						
							| 5 |  | ov2gf.2 |  |-  F/_ y S | 
						
							| 6 |  | ov2gf.3 |  |-  ( x = A -> R = G ) | 
						
							| 7 |  | ov2gf.4 |  |-  ( y = B -> G = S ) | 
						
							| 8 |  | ov2gf.5 |  |-  F = ( x e. C , y e. D |-> R ) | 
						
							| 9 |  | elex |  |-  ( S e. H -> S e. _V ) | 
						
							| 10 | 4 | nfel1 |  |-  F/ x G e. _V | 
						
							| 11 |  | nfmpo1 |  |-  F/_ x ( x e. C , y e. D |-> R ) | 
						
							| 12 | 8 11 | nfcxfr |  |-  F/_ x F | 
						
							| 13 |  | nfcv |  |-  F/_ x y | 
						
							| 14 | 1 12 13 | nfov |  |-  F/_ x ( A F y ) | 
						
							| 15 | 14 4 | nfeq |  |-  F/ x ( A F y ) = G | 
						
							| 16 | 10 15 | nfim |  |-  F/ x ( G e. _V -> ( A F y ) = G ) | 
						
							| 17 | 5 | nfel1 |  |-  F/ y S e. _V | 
						
							| 18 |  | nfmpo2 |  |-  F/_ y ( x e. C , y e. D |-> R ) | 
						
							| 19 | 8 18 | nfcxfr |  |-  F/_ y F | 
						
							| 20 | 2 19 3 | nfov |  |-  F/_ y ( A F B ) | 
						
							| 21 | 20 5 | nfeq |  |-  F/ y ( A F B ) = S | 
						
							| 22 | 17 21 | nfim |  |-  F/ y ( S e. _V -> ( A F B ) = S ) | 
						
							| 23 | 6 | eleq1d |  |-  ( x = A -> ( R e. _V <-> G e. _V ) ) | 
						
							| 24 |  | oveq1 |  |-  ( x = A -> ( x F y ) = ( A F y ) ) | 
						
							| 25 | 24 6 | eqeq12d |  |-  ( x = A -> ( ( x F y ) = R <-> ( A F y ) = G ) ) | 
						
							| 26 | 23 25 | imbi12d |  |-  ( x = A -> ( ( R e. _V -> ( x F y ) = R ) <-> ( G e. _V -> ( A F y ) = G ) ) ) | 
						
							| 27 | 7 | eleq1d |  |-  ( y = B -> ( G e. _V <-> S e. _V ) ) | 
						
							| 28 |  | oveq2 |  |-  ( y = B -> ( A F y ) = ( A F B ) ) | 
						
							| 29 | 28 7 | eqeq12d |  |-  ( y = B -> ( ( A F y ) = G <-> ( A F B ) = S ) ) | 
						
							| 30 | 27 29 | imbi12d |  |-  ( y = B -> ( ( G e. _V -> ( A F y ) = G ) <-> ( S e. _V -> ( A F B ) = S ) ) ) | 
						
							| 31 | 8 | ovmpt4g |  |-  ( ( x e. C /\ y e. D /\ R e. _V ) -> ( x F y ) = R ) | 
						
							| 32 | 31 | 3expia |  |-  ( ( x e. C /\ y e. D ) -> ( R e. _V -> ( x F y ) = R ) ) | 
						
							| 33 | 1 2 3 16 22 26 30 32 | vtocl2gaf |  |-  ( ( A e. C /\ B e. D ) -> ( S e. _V -> ( A F B ) = S ) ) | 
						
							| 34 | 9 33 | syl5 |  |-  ( ( A e. C /\ B e. D ) -> ( S e. H -> ( A F B ) = S ) ) | 
						
							| 35 | 34 | 3impia |  |-  ( ( A e. C /\ B e. D /\ S e. H ) -> ( A F B ) = S ) |